

 Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

Onward! 2011, October 22–27, 2011, Portland, Oregon, USA.

Copyright © 2011 ACM 978-1-4503-0941-7/11/10…$10.00.

Mind Your Language:

On Novices' Interactions with Error Messages

Guillaume Marceau, Kathi Fisler

WPI Department of Computer Science
Worcester, MA USA

{gmarceau,kfisler}@cs.wpi.edu

Shriram Krishnamurthi

Brown University Dept of Computer Science
Providence, RI, USA

sk@cs.brown.edu

 Abstract

Error messages are one of the most important tools that a

language offers its programmers. For novices, this feed-

back is especially critical. Error messages typically contain

both a textual description of the problem and an indication

of where in the code the error occurred. This paper reports

on a series of studies that explore beginning students' inter-

actions with the vocabulary and source-expression high-

lighting in DrRacket. Our findings demonstrate that the

error message significantly fail to convey information accu-

rately to students, while also suggesting alternative designs

that might address these problems.

Categories and Subject Descriptors D.3.m [Program-

ming Languages]: Miscellaneous; K.3.2 [Computer

and Education]: Computer and Information Science Edu-

cation—Computer science

General Terms Languages, Human Factors.

Keywords Novice programmers, error message design,

beginner-friendly IDEs, user-studies.

1. Introduction

Error messages are one of the most critical user experience

elements for programmers. These messages play at least

two critical roles: as a programming tool, they should help

the user progress towards a working program; as a peda-

gogic tool, they should help the user understand the prob-

lem that led to the error. In addition, they must avoid

frustrating the user further, either by being too hard to un-

derstand or by leading a user down the wrong path to cor-

recting the problem.

Yet, ask any experienced programmer about the quality

of error messages in their programming environments, and

you will often get an embarrassed laugh. In every envi-

ronment, a mature programmer can usually point to at least

a handful of ―favorite‖ bad error responses. When they

find out that the same environment is being used by novic-

es, their laugh often hardens.

If you agree with the previous paragraphs, ask yourself

this: when‘s the last time you saw a paper with rigorous

human-factors evaluation on this topic? Everyone knows

user evaluation matters, especially with novice program-

mers. Future-work sections of papers say ―we really should

do some user evaluation‖—always in the future. Living in

glass houses, we don‘t ask each other hard questions about

this. Most of us would not even know where to begin ad-

dressing the question. It‘s time to change that.

Many researchers in programming languages and IDE

design have long felt that students and professional pro-

grammers need different levels or forms of feedback. IDEs

geared at beginning programmers take various approaches

to this problem, from supporting custom languages for be-

ginners to clarifying their error messages. DrRacket‘s lan-

guage-levels provide a hybrid model in which a full-

fledged language is staged into sub-languages that tailor the

available constructs (and error messages) to what students

will have seen at different points in the course. In this ap-

proach, programs that are legal in advanced levels (such as

functions with no arguments) may be illegal in beginning

levels. In addition, the sub-languages elide many advanced

constructs (such as macros and contracts) that are available

in the professional Racket programming language.

The DrRacket development team put considerable effort

into the design of the error messages. They carefully con-

sidered both form and terminology, and refined the mes-

sages many times over the years based on their

observations of students. Each message presents a textual

description of the problem and highlights a relevant expres-

sion in the source code. In 2009, curious about difficulties

students seemed to be having with responding to the mes-

sages, we began formal user-based studies of the problems.

We logged students‘ programming sessions and explored

the effectiveness of the error messages at helping students

make progress. The results have been humbling, as well as

a source of many interesting questions.

At a low level, the results show that students struggle

with the carefully-designed vocabulary of the error mes-

sages and often misinterpret the source highlighting. At a

high level, this work reveals that the DrRacket team (which

includes the authors of this paper) lacked a clear model of

errors and feedback to guide their design. Given the tight

connection between error reporting and linguistic decisions

such as parsing strategies, this is clearly a Programming

Languages problem as much as one of HCI.

This paper describes a series of formal studies on novice

students‘ understanding of vocabulary and source high-

lighting. These illustrate the kinds of useful information

that arise from formal studies, particularly those that inform

a larger model of how students should interact with the

error messages. Our observations are scoped narrowly: we

focus on error message text and error highlighting without

considering other mechanisms such as debuggers, dynamic

error stack contexts, etc. Nevertheless, we do present some

recommendations for IDE designers. Overall, we hope to

help raise the level of discourse among PL researchers

about how to effectively consider the impact of our work

on users.

2. Exploring Students’ Responses

to Errors

Figure 1(a) shows a screenshot of DrRacket presenting an

error message. The student has written the program in the

upper window and hit the ―Run‖ button located in the up-

per-right of the window. DrRacket reports an error to the

student through the text in the lower window (starting with

―define:‖) and highlights an expression in the source code.

In this case, DrRacket is reporting a parsing error: the stu-

dent did not close the parameter list for the label function

after the name parameter, so DrRacket is trying to treat the

highlighted expression as a parameter name (presumably

the student meant for that expression to be the function

body). The error message text reports this problem, refer-

ring to the highlighted expression as ―something else‖.

How do we gauge whether this error message helped the

student correct the problem? The edit that the student per-

formed in response is a good indicator. In this case

(Figure 1 (b)), the student inserted the identifier name after

the leading string=? in the highlighted expression.

Knowing that the error is reporting on a parsing problem

within a parameter list, this seems an odd edit. However,

depending on how the student interpreted the message, the

action might make sense. DrRacket has highlighted a

chunk of text and reported that something is wrong with the

―2nd argument‖. The student has inserted a term (in this

case, name) into the second position of the highlighted ex-

pression. Whether the student chose name based on the

existing parameter or the use of ―name‖ in the error prose is

unclear.

One could certainly argue that the error message was not

effective in this case because the student‘s edit did not ad-

dress the underlying problem (the student will get the same

error for the same reason if he tries to run the edited code).

Before recommending mitigations for this situation, how-

ever, we should assess the frequency of the problem across

a larger pool of students. To this end, we logged students‘

interactions with DrRacket at the keystroke level, including

timing data. In addition, each time a student received an

error message, we saved a copy of her program. This com-

bination of logged keystrokes and file snapshots lets us

replay students‘ responses to error messages: we see what

error they received, where they edited in response, and how

much editing they did before attempting to run the program

again.

The example in Figure 1 is one of the many programs

we collected. It occurred during the first lab session of

WPI‘s introductory course for novice programmers. We

collected data from 60 students (out of 120, self-selected

via consent to participate in our study) in the course. We

collected data during lab sessions, which ran 50 minutes

per week for 6 weeks.

To analyze this data, two experienced instructors inde-

pendently assessed the extent to which individual edits ad-

dressed the reported problems. The marking rubric

(validated for inter-rater reliability) and detailed results are

reported elsewhere [1]. Our initial goal was to identify

specific error messages that performed poorly in practice.

The results emphasized that the ―performance of a mes-

sage‖ had to be considered in context of the course. For

example, we saw a surge in errors associated with the

(a)

(b)

Figure 1. (a) A student's program and its error message,

(b) The student's response to the error message

wrong numbers of arguments to functions in the fifth week

of the course, but those traced to students making mistakes

while building examples of n-ary trees (which involve lots

of nested calls to constructors). Even in the general con-

text, however, the data suggest that students often fail to

respond to errors effectively. The more interesting ques-

tion, then, is why.

3. Digging Deeper: Interviews

About Errors

The edits alone do not indicate what a student was thinking

while processing an error message. For that, we require

dialog with students as they work with the messages. To

that end, we recruited four students from the original study

to do individual hour-long talk-aloud sessions with the

study team. We gave each student a series of programs

from the data set and asked them to correct the error, talk-

ing about how they interpreted the error as they worked on

the problem. We first presented each student with a few

programs they had written during their first lab, then we

presented programs from a common set of other, often sub-

tle, errors made during Lab #1 by their classmates in the

study. At various points during each interview, we asked

each student about their interpretations of the messages.

We audio-recorded and transcribed each of these sessions.

Inspired by examples such as that in Figure 1, we asked

students about their interpretations of the highlighting. The

following excerpts are quoted from the transcripts:

Interviewer: When you get these highlights,
what do they mean to you?

Student #1: The problem is between here and
here, fix the problem between these
two bars.

Interviewer: You were saying that you pattern
match on the highlight and don't
read the messages at all.

Student #2: I think that in the beginning it was
more true, because the highlight
were more or less “this is what's
wrong,” so when I was a beginning
programmer that's what I saw and
that's what I would try to fix.

Interviewer: When DrRacket highlights some-
thing, what does it highlight?

Student #3: It highlights where the error oc-
curred.

Interviewer: Do you usually look for fixes inside
the highlight?

Student #3: mmm… I think I did at the begin-
ning.

All three of these excerpts suggest that students initially

interpreted the highlighting as saying ―edit here‖, or ―look

inside here for the problem‖. As we discuss in Section 4

the actual semantics of DrRacket‘s highlights are more sub-

tle than this.

During the interviews, we observed that students mis-

used words, or used long and inaccurate phrases instead of

using the precise technical terms when describing code.

This was perplexing, since the interviews occurred after the

students had spent 4 to 6 weeks reading these technical

words in the error messages. Plus, some exchanges during

the interview suggested that the students' poor command of

the vocabulary undermined their ability to respond to the

messages.

The following exchange happened after the student had

spent two and a half minutes trying to formulate a response

to the error message shown in Figure 2. After observing

that the student was not making progress, the interviewer

decided to provide a hint.

Interviewer: The error message says “the func-

tion body.” Do you know what
“function body” means?

Student: Nah… The input? Everything that
serves as a piece of input?

Interviewer: Actually, it's this. When DrRacket
says “function body” it means this
part.

Student: Oh man! I didn't…

The student then proceeded to fix the error successfully. To

help the student, it was sufficient to provide a non-

definitional meaning for the expression ―function body‖, by

pointing at the function body of a different function (not the

locus of the error).

We also noticed that students tended to look for a rec-

ommended course of action in the wording of the error

message. For instance, once the error message mentions a

missing part, students felt prompted to provide the missing

part, though this might not be the correct fix. This could

explain the edit from Figure 1 where the student took the

expression ―expected a name‖ to mean ―insert ‗name‘

here‖, while the actual fix was to add a parenthesis.

(define (string-one-of? check-for-match stringOne stringTwo)

 cond [(and (string=? check-for-match stringOne))]

 [(and (string=? check-for-match stringTwo))])

 define: expected only one expression for the function

body, but found at least one extra part

Figure 2. Troublesome Fragment

3.1 What the Interviews Tell Us

We intended the interviews to be formative, simply sug-

gesting issues that warranted further exploration as we tried

to understand how students respond to DrRacket‘s error

messages. Accordingly, the small number of students we

interviewed is not scientifically problematic (especially

once multiple interviews point to common issues).

Students‘ weak facility with DrRacket‘s technical vo-

cabulary and misinterpretation of the highlight stood out as

both common and fundamental problems. The vocabulary

problems were particularly surprising, given the relatively

few concepts required for programming in DrRacket and its

designers‘ efforts to choose vocabulary carefully. As a

result, we looked at both highlighting and vocabulary more

carefully.

4. Semantics of the Highlight

Informally, the highlight means ―this expression or paren-

thesis is related to the error‖. The common ―edit here‖ in-

terpretation ascribes a more precise semantics to the

highlight. Through manual inspection of all of the error

messages in the Beginning Student language, we found five

different meanings for DrRacket‘s highlights, depending on

the error:

 This expression raised a runtime exception

 The parser did not expect to find this

 The parser expected to see something after this, but noth-

ing is there

 This parenthesis is unmatched

 This expression is inconsistent with another part of the

code

The ―edit here‖ interpretation applies in at most two of the-

se cases: the first and the fifth (though the correct edit for

the fifth is often in the other half of the inconsistency,

which the highlighting does not identify explicitly). In the

second case, the student must edit around the highlighted

code, perhaps to combine it with another expression. In the

third case, the student may need to add code to the right of

the highlight or adjust parentheses to change the number of

expressions within the surrounding constructs.

As computer scientists, we understand the genesis of

these different semantics. Highlights arise from either

compile-time or runtime errors. In the case of a runtime

error, the expression that failed to evaluate properly gets

highlighted (the first and fifth cases in our list). In the case

of a parsing error, the highlighting reflects where the source

code is inconsistent with the language grammar. Here, the

third case is particularly interesting, as DrRacket must

highlight an expression to explain the absence of another

expression. In some IDEs, the errors focus on source loca-

tions, giving errors such as

 expected to see a token such as if, {, or return here

 where the visual aid points to a particular character posi-

tion within the source code. DrRacket instead chooses to

highlight expressions, presumably in an attempt to help

students focus on the problematic expression, more than the

location. Which style of errors gets produced is closely

tied to the parsing strategy that the language employs.

In the absence of explicit instruction about how to work

with the highlights, this discussion suggests that students

need to understand (or infer) the parsing strategy. CS1 stu-

dents do not have knowledge necessary to make sense of

this interpretation, and they surely cannot be expected to

deduce it from their observation of DrRacket's behavior.

DrRacket does not explain highlighting to students. If a

class does not take care to explain the highlighting (as we

admit we never thought to do in our own classes), students

are on their own to deduce its meaning. Without a system-

atic way of understanding the messages given to them, stu-

dents learn that programming is a discipline of haphazard

guessing—the very reverse of our teaching objective.

That said, highlights do provide visually distinctive pat-

terns for certain classes of errors. Mismatched-parenthesis

errors highlight a single parenthesis. Unbound-identifier

errors highlight a single identifier. Students quickly learn

the highlighting semantics of these patterns. Distinguishing

cases in which entire expressions are highlighted requires

students to look more closely at a combination of the struc-

ture of the highlighted expression and the accompanying

error text. It is in these more complicated cases that stu-

dents need help understanding highlighting semantics.

Simple instructions such as ―find the phrase in the error

text that matches the highlight‖ are unlikely to suffice.

While most of DrRacket‘s error messages reference the

highlighted code (e.g., ―something else‖ in Figure 1), some

do not. Furthermore, the correspondence is sometimes

ambiguous in potentially misleading ways. In Figure 1, the

phrase ―the function's second argument‖ could refer to the

function being defined or the function being called. The

latter interpretation could help explain the student‘s mis-

taken response to this message.

Primitive name

Procedure

Primitive operator

Field name

Procedure application

Predicate

Defined name

Type name

Identifier

Function body

Function header

Argument

Clause

Expression

Selector

Table 1. Vocabulary words

4.1 What the Highlighting Observations

(Do Not) Tell Us

While the interviews strongly suggest that students read

expression highlights as saying ―edit here‖, we don‘t know

why. For example, students may view DrRacket as an ora-

cle that ―knows‖ how to fix their programs; they may be

working quickly and thus try editing in the highlighting

first (rather than think too hard about the problem until

necessary); perhaps the semantics of the highlight is actual-

ly clear if students take the time to look carefully at the

highlight in the context of the textual message. There may

be obstacles preventing students from developing a more

precise semantics, such as ―the error mentions the high-

light‖ interpretation. Each of these reasons, if dominant,

would suggest different changes to the IDE.

5. Vocabulary

While vocabulary difficulties arose during the interviews,

we wanted more extensive data about students‘ mastery of

vocabulary before recommending IDE changes. To study

this question in more detail, we extracted the terms used in

the most frequently-presented error messages in our 6-week

data set. Table 1 shows the 15 technical vocabulary words

in the 90th-percentile of this list. We then developed a

short quiz that asked students to circle instances of 5 specif-

ic words from this list in a simple piece of code. We ad-

ministered the quiz at three different universities: WPI,

Brown, and Northeastern, receiving 90, 32, and 41 respons-

es respectively. At each university, students had used

DrRacket for at least a couple of months before taking the

quiz. As the quizzes were anonymous, we were not able to

compare quiz performance with our coding data from the

recorded editing sessions.

The results are roughly similar across all three universities

(see Figure 3). Some words are harder than others. North-

eastern‘s data are slightly stronger, while WPI‘s are slightly

weaker. More importantly, only four words were correctly

identified by more than 50% of the students. These results

question whether students are able to make sense of the

error messages. While students could have conceptual un-

derstanding of the messages without the declarative under-

standing of the vocabulary, our follow-up quiz (discussed

in Section 6.) provides some evidence against this possibil-

ity.

5.1 Do Students Learn Vocabulary from Lectures?

Class lectures, as well as the IDE, discuss code via a set of

terms. One might reasonably expect that students would

perform better on such a quiz if the terminology used in

their lectures matched those used in the IDE‘s error mes-

sages. To confirm this, we asked the professors who ad-

ministered the quiz which of the terms from Table 2 they

had used in class to describe code. Whenever a word used

by DrRacket was not used in class, the professors either

elected to use a different word or simply found it was not

necessary to introduce the concept in class. For instance,

the two professors who did not use the term ―procedure‖

used the term ―function‖ instead.

Studies frequently use control groups to quantify the ef-

fect of an intervention. While we did not create control

groups around the usage of terms in class, by happenstance

11 of the 15 words were used at some universities but not

others. These words formed controlled trials (a technical

term), in which it was possible to quantify the effect of a

word being used in class on the students' understanding of

that word. To help factor out the effect of uninteresting

variability, namely the variability in university strengths

and in word difficulty, we fitted a linear model to the data.

The model had 17 variables total. The first 14 variables

were configured to each capture the intrinsic difficulty of

one word, relative to a fixed 15th word; the next two varia-

bles were configured to capture relative university strength.

The last variable was set to capture the influence of a

word's use in class. The fit on this last variable indicated

that using a word in class raises its quiz score by 13.8%

(95% confidence interval, 2.93% to 24.7%), a result which

is statistically significant at the 0.05 level (p=0.0147).

These results raise many interesting research questions:

 We know that students struggle to respond to error mes-

sages. Can we quantify the extent to which this is caused

by their poor command of the vocabulary?

 Using a word in class raises the students' understanding

of the word relatively little. How are they learning the

vocabulary, then? If they are learning it by reading error

Figure 3. Average percent correct on the vocabulary quiz

messages that they do not understand well, what are they

learning?

 Some error messages make statements where everyday

words are used in a technical sense, such as ―indentation‖

or ―parenthesis‖ (which DrRacket sometime uses to refer

to a square bracket, since the parser considers them

equivalent). Are these words a problem as well?

The results also raise pedagogic questions about good ap-

proaches to teach the technical vocabulary of programming.

Should courses use specialized vocabulary training tutors

(such as FaCT [2])? Lecture time is limited, as are home-

work contact hours; could the error messages help teach the

vocabulary?

All three professors agreed that the mismatch between

their vocabulary usage and DrRacket's was contrary to their

efforts to use consistent language in class. Moreover, once

the issue was pointed out to them, they all agreed that ad-

justments were needed. In general, we suspect professors

tend to forget about the content of errors and other IDE

feedback when designing lectures; the connection between

curricula and IDEs needs to be tighter.

6. Vocabulary and Highlighting

in Context

Our initial probes into highlighting and vocabulary raised

additional questions that would impact recommendations

for IDEs. We developed a quiz to explore two of these

questions: (1) whether students understand what highlights

refer to when explicitly asked about it, and (2) whether

students can link vocabulary words to code fragments in

the context of an explicit program and error message (with

highlighting). The new quiz presents students with a series

of error message screenshots, as shown in Figure 4. In the

first kind of question (Figure 4(a)), students are asked to

circle the phrase in the error message text that corresponds

to what is highlighted. In the other kind of question

(Figure 4(b)), we circled several terms in the error-message

text and asked the students to box off the corresponding

expression in the source program, or to cross out the term if

it did not correspond to any particular expression.

To further explore the roles of vocabulary and highlight-

ing, we also designed two different guides to accompany

the quiz. One guide was a standard textual glossary of all

vocabulary terms used in the messages within the quiz.

The other guide gave two samples of code where each

demonstrative noun phrase in the error message text was

highlighted in the same color as the code fragment it was

referring to; Figure 6 in Section 7 shows one of these sam-

ples. Each student received at most one of these two guides

(i.e., some received none) along with their quiz.

 Brown NEU WPI

Function body

Expression

Type name

Argument

Identifier

Procedure

Primitive operator

Procedure application

Selector

Field name

Function header

Predicate

Primitive name

Defined name

Clause

 = Used in Class

Table 2. In-class word use

(a) (b)

Figure 4. Highlight interpretation quiz: (a) What term is highlighted? (b) What (if anything) do these terms refer to?

6.1 Methodology

Nearly all programs used in this study were taken from our

dataset of actual student errors. In one case, we created our

own example with the same high-level structure, but a sim-

plified key expression in order to assess the impact of a

simpler term on error comprehension. We chose programs

that exercised vocabulary terms that we knew to be prob-

lematic and programs on which we had seen poor student

performance in the past. There were 20 programs with

errors in our initial pool. We made three versions of the

quiz, each asking ‗what is highlighted‘ for 2 of these pro-

grams, and ‗what code does this term reference‘ for 5 of

these programs. For the latter, we asked about 2–4 terms

per program, for a total of about 18 questions across 7 pro-

grams per quiz. We refer to these as ‗what‘s circled‘ ques-

tions in the rest of this section. Combining each quiz

version with each of the three possible guides (just de-

scribed) yielded 9 distinct quizzes.

We administered the quizzes to students immediately af-

ter one of the weekly course labs at WPI; the quiz did not

consume instructional time. Each participant received $5

in exchange for a completed quiz. All quizzes were anon-

ymous. As our study was exempt from IRB procedures, we

did not issue formal consent forms, though we did describe

the study and our uses of data to students in the course via

email the previous day. A total of 79 students submitted

completed quizzes. The quizzes were done entirely on pa-

per, rather than through DrRacket.

6.2 Results

In analyzing the data from the new quiz, we initially

checked whether the style of the vocabulary guide affected

the student‘s performance on the quiz. This question did

not yield a statistically reliable answer: while the raw data

suggested that some ―better‖ answers were slightly more

common for students who received the color-coded guide,

statistical analysis could not demonstrate that those differ-

ences were due to more than chance. On the other hand,

we did not have enough data to argue for a lack of effect

either (this involves a different statistical calculation which

depends on both the magnitude of the differences and the

size of the data set). Given the lack of reliable results, we

chose not to report raw data on the effect of the guides in

this paper.

Number of

questions of

this type

Syntax

of cond

(expected)

Syntax

of cond

(found)

Syntax

of function

calls

Syntax

of define

Runtime

type

15 10 14 6 3

Correct 180 113 206 82 42

‗Expected‘

mistake
96 N/A N/A N/A N/A

Right-kind,

wrong-instance
N/A 11 20 11 20

Wrong kind 91 120 122 56 15

No answer,

inscrutable
26 18 21 9 4

Table 3. Results from the ‗what‘s circled‘ questions. Each

column corresponds to a different class of error messages;

the number of quiz questions per class across the three

quizzes appears under the class description. As 26 to 27

students completed each question, the total answers per

column lies in the range of the number of questions multi-

plied by 26 or 27. The rows characterize the correctness of

the answers. The term ―kind‖ in the row descriptions refers

to ―grammatical term‖ (such as ―argument‖ or ―function

call‖). Details appear in the prose.

(a) (b) (c) (d)

Table 4. Results from ‗what‘s highlighted‘ questions. Both colors and brackets (for black-and-white viewing) characterize

possible responses. Correct answers are in blue, answers in ―expected‖ clauses are in orange, answers in a positional phrase

(specifically, ―after‖) are in red, and otherwise incorrect answers appear in black. Charts (a) and (c) each combine data from

two questions with different code but the same error message.

Subsequently, we ignored the different vocabulary

guides and studied the data aggregated across the guides.

Then we aggregated further by combining the data for

problems with similar error messages (syntax errors on

function definition, on conditionals, on structure definition,

on function calls, and runtime errors). The results present-

ed here are from the data aggregated across message types.

Table 3 shows the results for the ‗what‘s circled‘ questions,

and Table 4 shows those for the ‗what‘s highlighted‘. We

discuss the contents of the tables through the following

descriptions of several interesting patterns in the data.

6.2.1 Found/Expected Confusion

As the examples in Figure 4 demonstrate, DrRacket‘s er-

rors follow a common structure of

<construct>: expected <expr type> but found <X>

where <expr type> describes in grammar terms what the

parser expected to find, or the expected data type for a

runtime error; and <X> describes the kinds and number of

expressions found, or a generic ―something else‖, or, in

case of a runtime error, the specific value given.

The grammatical structure of the message (in English)

suggests that the terms in <expr type> do not appear in the

code, while those in <X> do. We were therefore surprised

at the frequency with which students thought the highlight-

ing referred to something in the <expr type> portion (the

orange highlighting in Table 4 (a) to (d)). Only one class

of the ‗what‘s circled‘ questions admitted a similar mistake

(those that do not have ―N/A‖ in the ―expected mistake‖

row). Those questions asked students to identify which (if

any) part of the code corresponds to the words clause,

question, and answer in the expected half of the error mes-

sage ―cond: expected a clause with one question and one

answer, but found…”. The leftmost data column of Table 3

shows that students answered correctly (no corresponding

code) only 180 times; 96 times, they circled the right kind

of expression but not the one referenced in the message,

and 91 times they circled something completely unrelated

to the term. This strongly suggests that many students are

not grasping the grammar of the messages. A student re-

mark in a comment area at the end of the quiz emphasizes

this confusion:

 I wasn't confused with any of the words, but us-
ing language like “expected ... but found some-
thing else” is boths useless and insignifigant (sic)

6.3 Location versus Description

Two questions gave students programs with malformed

structure definitions, including the one shown in Fig-

ure 4(a). The error messages concerning the syntax of de-

fining structures take the form:

 define-struct: expected <X> after <Y> but found some-

thing else

where Y refers either to the term define-struct itself, or to

the type name introduced in the define-struct (and X is an-

other term accordingly). Many students made the ex-

pected/found error just discussed on these questions, but a

different answer was also common: circling ―after <Y>‖

(Table 4(c) and (d)).

At first glance this seems incorrect, as the highlighting is

meant to refer to ―something else‖. However, there is some

logic to a student selecting ―after‖: it is an accurate descrip-

tion of the position where the highlight occurs, as opposed

to a description of what is highlighted. None of the other

error messages we tested had location terms. For students

looking to an error for guidance as to where to edit, howev-

er, it makes sense that they would look for highlighting to

reference location-oriented terms.

6.4 Vocabulary in Context

This new quiz gives us a second look at the students‘

command of the vocabulary. Our original vocabulary quiz

(results in Figure 3) showed that the students had poor

command of the vocabulary when queried outside of the

context of an error message. If we see similar struggles

when testing students on vocabulary in the context of an

error message, then terminology is likely to be a factor in

students handling error messages poorly.

Results on the ‗what‘s circled‘ questions that did refer to

source expressions appear in the four rightmost columns of

Table 3. The percentage of correct answers hovers around

or below 50% on each of these questions, but that figure

tells only part of the story. Some questions had more than

one source expression that illustrated the term we asked

them to identify: answers that circled a valid instance of the

term, but not the one referenced in the message, are tallied

in the ‗right kind, wrong instance‘ row. In contrast, the

‗wrong kind‘ row tallies responses in which the circled

code was not an instance of the requested term (such as a

student circling a clause when asked for an argument). The

‗wrong kind‘ mistakes dominate the ‗right kind, wrong

instance‘ ones. This gives us further confidence that the

vocabulary truly is problematic for students, even in the

context of error messages.

6.5 Highlights as Referents

One question, shown in Figure 5, yielded very few correct

answers (data in Table 4(a)). Upon closer inspection, we

realized that the question we asked had no good answer

since the error message's text never refers to the highlighted

expression. DrRacket highlights the entire call to +, but the

closest referent to that is the very start of the error message

(the ―+: …‖ part).

DrRacket has highlighted the expression whose evalua-

tion generated a runtime error. While this is reasonable

linguistically, it is inconsistent with the idea that highlights

should always correspond to something mentioned in the

message. To handle the latter, the error should highlight

the second argument rather than the entire call to +. If we

hope to teach students guidelines for working with error

messages such as ―figure out what term has been highlight-

ed‖, we must ensure that our error messages only highlight

such referents. More generally, we must ensure the high-

lights have a semantics that is both internally-consistent

and consistent with the strategies we wish to teach students.

6.6 Lessons Learned

On the whole, students performed reasonably well on ques-

tions about what term was highlighted (the blue bars in

Table 4). In most cases, correct answers dominate incor-

rect ones, with errors related to ―expected/found‖ confusion

dominating the errors. The one question with a large num-

ber of outright wrong answers combined both a runtime

error (which students often struggle to understand) with no

clear referent (as described in the previous observation). If

we discount this question and focus on compile-time errors,

students seem able to match highlights to error-message

terms. This suggests that the ―edit here‖ interpretation has

some source other than mere confusion, such as students

seeking an easy default behavior or giving too much atten-

tion to the highlight due to its strong visual appearance.

The vocabulary results, as already discussed, are weak-

er. This suggests that vocabulary and message grammar

are perhaps bigger factors than highlighting in students‘

difficulties with responding to errors. Were this truly the

case, however, we might have expected to yield statistically

significant improvements from giving students vocabulary

guides as part of the quiz. It would be worth conducting an

additional study with a more carefully-designed vocabulary

guide, just to double-check whether there is indeed an ef-

fect that either our quiz or data set size did not uncover.

Were we to conduct the concrete highlighting and vo-

cabulary quiz again, we would also make several changes

based on what we saw in the current data. We originally

chose quiz questions to test a range of terms that we

thought were problematic, as well as different kinds of

highlighted expressions (concrete versus abstract, parenthe-

ses versus complex expressions, direct versus indirect ref-

erences). In hindsight, we conflated runtime errors (which

we suspect are generally problematic) with other problems

(such as the question with no good answer). In a new quiz,

we would isolate runtime errors, test a wider range of high-

light meanings, and add more questions with both location

and descriptive terms that could correspond to expressions.

While the basic scientific principles about changing only

one variable at a time sound easy in theory, we find that

conflation of concerns often reveals itself only in the pres-

ence of concrete data.

7. Recommendations

Ultimately, we are pursuing this research to help improve

how DrRacket and other IDEs for beginners handle error

messages. While many research questions remain (as out-

lined in earlier sections), our results do suggest several

concrete proposals that we intend to implement and vali-

date in the near future.

In developing these proposals, we adhere to two funda-

mental principles about error message design:

 Error messages should not propose solutions. Even
though some errors have likely fixes (missing close pa-
rentheses in particular places, for example), those fixes
will not cover all cases. Given students‘ tendencies to
view DrRacket as an oracle, proposed solutions could
lead them down the wrong path. This principle directly
contradicts requests of the students we interviewed, who
had learned common fixes to common errors and wanted
the messages to propose corrections.

 Error messages should not prompt students towards in-
correct edits. This is related to, yet distinct from, the
previous principle. In particular, it reminds us to careful-
ly consider how students might interpret a highlight.

With the principles in hand, we turn to our proposals:

7.1 Simplify the vocabulary in the error messages.

DrRacket‘s messages often try too hard to be thorough,

such as distinguishing between selectors and predicates in

error messages that expect functions. The semantic distinc-

tions between these terms are often irrelevant to students,

particularly in the early weeks. On the whole, DrRacket is

accurate and consistent in its use of technical vocabulary.

However, some of its terms are overly precise relative to

terms that students already know. For example, DrRacket

uses the term ―identifier‖ rather than ―variable‖, even

though ―variable‖ is the term students are used to from high

school math classes. We suspect that beginning students

would fare better with familiar vocabulary, even if it comes

Figure 5. A highlight with no clear referent in the text

at a slight cost in precision (particularly, that ―variable‖

should only apply to a name whose value can be changed

via side-effects).

Table 5 shows a proposed simplification of the vocabu-

lary that currently appears in DrRacket‘s teaching lan-

guages (Beginner through Advanced). We are preparing to

deploy this simplified vocabulary to students. In the inter-

est of timely progress, we have chosen not to do extensive

validation of this simplified list. Doing such validation

well would ideally require us to determine the ―best‖ set of

terms for introductory students, an effort that should look

across languages, across high-school mathematics texts,

and across the many populations of students who use be-

ginner IDEs. While we feel this is important work (and

hope someone else takes up the charge), it is tangential to

our focus on understanding how students interact with error

messages.

One could reasonably argue that the current (non-

simplified) vocabulary is appropriate, or even desirable, for

students at the end of CS1. Certainly, we should expect

that CS1 students learn a good deal of vocabulary over the

span of the course. We note that this same observation is

the key principle underlying DrRacket‘s language levels:

protect students from constructs that they have not yet

learned. Perhaps the same principle should apply to the

design of error messages within those language levels: use

a vastly simplified vocabulary in the Beginner language,

then relax the messages to use more complex but precise

vocabulary as the course progresses.

7.2 Be explicit in errors about inconsistencies.

When a student uses a function or constructor inconsistent-

ly with its definition, the current DrRacket error messages

highlight the expression for the usage, but not the defini-

tion. Such errors can be difficult to fix when the problem

lies in the definition instead. The highlight effectively has

an over-focusing effect, steering students away from the

possibility that the problem lies in the other half. The best

student we interviewed had learned to avoid the over-

focusing effect, as noted in the following exchange:

Interviewer: Which one was more useful, the

highlight or the message?

Student #2: mmm… I would say the message.
Because then highlight was redi-
recting me to here, but it didn't see
anything blatantly wrong here. So I
read the error message, which said
that it expected five arguments in-
stead of four, so then I looked over
here.

Interviewer: Would you say the highlight was
misleading?

Student #2: Yeah. Because it didn't bring me
directly to the source.

Once again, the student‘s response indicates an ―edit here‖

instinct towards the highlight, even though he had learned

that was not always the correct response. An IDE cannot

be omniscient about which of the definition or use is incor-

rect in a program. It can, however, avoid biasing a student

towards one of the two through its error-reporting mecha-

nism.

The ―expected … found …‖ structure of DrRacket‘s er-

ror messages adds to the bias imposed by the highlights in

errors about inconsistencies. When a use contradicts a def-

inition, the expected clause refers to the definition, which

suggests that the definition is fine and the use problematic.

Ideally, this form should be reserved for definitions provid-

ed by DrRacket or a library, but not used for inconsisten-

cies arising from user-defined functions or constructors.

Inconsistencies (and biases in their presentation) arise in

other circumstances outside of definitions and use of func-

tions. The grammar of the language imposes constraints on

the position where certain forms can appear. When one

such constraint is violated, the error messages of DrRacket

state that one endpoint of the constraint is correct and the

Old term New term

Procedure

Primitive name

Primitive operator
Predicate

Selector
Constructor

Function

Name

Identifier
Argument
Defined name

Variable, for value definitions, mutable
variables, and for formal argu-
ments (in function definitions)

Argument, for actual arguments (in func-
tion calls)

Sequence At least one

Structure type name Structure name

Question—answer clause
A clause is expected to have a question and
an answer

Function header
Primitive name

Keyword

Type

These words and notations have been re-
moved entirely and reworded in terms of
other vocabulary words.

<type name>
‘literal word’

These punctuations are no longer used in
the error messages.

Function body

Expression

Field name

Type name

Top level
Binding

Clause

Part

These words stay unchanged

Table 5. Simplified vocabulary

other one is wrong, but the choice is either arbitrary or dic-

tated by accidents of the parsing strategy used. For exam-

ple, in the following code fragment (from a student not

involved in our studies) the student has correctly defined a

constant for an image, but erroneously wrapped the lookup

of that constant with parentheses.

(define LIGHT_RED (circle 20 "outline" "red"))

(define TRAFFIC_LIGHT

 (place-image (LIGHT_RED) …)

The DrRacket error message reports:

function call: expected a defined name or a primitive op-

eration name after an open parenthesis, but found some-

thing else

This message assumes that the parentheses are correct, and

that a function call, not the use of the constant, was intend-

ed. But the reversed assumption would be equally valid,

and in this case it would match the student's intention. By

favoring one half of the inconsistency, the message violated

our core principle that error messages should not suggest a

particular edit to the student. Indeed, in response to this

error the student inlined the constant‘s definition. This left

a function call where one ―was expected‖ and made the

error go away, but it also pushed the student away from a

correctly designed program.

In the case of errors reporting inconsistencies, one op-

tion (suggested by Michael Jackson, the software engineer-

ing researcher) would be to simply ask the student what

they were trying to do (e.g., use a constant or call a func-

tion), then give an appropriate detailed message based on

that goal. Starting from student input would avoid having

the error message prompt the student towards a particular

solution, while letting us give a more precise message than

―you‘ve used a non-function constant as a function here‖.

In general, we suspect that we should be more interactive in

providing error feedback to students. This will be a key

component of our work moving forward.

7.3 Help students match message terms to

code fragments.

Error messages contain many demonstrative references,

such as ―the function body‖ or ―found one extra part‖. As

instructors, we often help students by connecting these ref-

erences to the corresponding pieces of code. Sometimes,

DrRacket‘s highlighting achieves this effect, too (as with

unbound identifiers or unmatched parentheses). However,

messages often contain multiple terms, while DrRacket

currently highlights only one code fragment.

We therefore propose that error messages highlight eve-

ry definite reference and its corresponding code with a dis-

tinct color. The quiz guide discussed earlier (displayed in

Figure 6) was taken from a preliminary mockup of this

idea. Each demonstrative reference in the message uses a

colored highlight to point to a specific code fragment (in

this paper the colors were outlined with different line styles

for black-and-white viewing). This design has several ben-

efits: it resolves the ambiguity about highlighting (since

highlights correspond exactly to terms in the message), it

eliminates ambiguous references (as seen in Figure 1), and

it gives students a chance to learn the vocabulary by exam-

ple (in Figure 6, the meaning of the word ―clause‖). This

design naturally highlights both the definition and the use

on an inconsistency error (since both are referred to by the

text of the error messages), which should avoid triggering

the over-focusing behavior we observed. Early versions of

this design heavily influenced our stated principles. For

example, we briefly considered highlighting indefinite ref-

erences (such as ―question‖ in Figure 6) until we realized it

violated the second principle. We are currently refining

this design with intent to deploy it experimentally next

year.

7.4 Treat error messages as an integral part of

course design.

Professors must ensure their curriculum aligns with the

content of the error messages, just like math professors

ensure their notation matches that of textbook. While this

may sound obvious, calibrating lecture notes against

DrRacket‘s error messages had not occurred to the instruc-

tors who administered our vocabulary quiz (all of whom

are veteran CS1 professors).

In the specific case of DrRacket, which accompanies

particular textbooks, we intend to develop vocabulary con-

ventions for talking about Beginner Student Language

(BSL) code. This convention will cover both the needs of

the error messages and the needs of educators. The conven-

tion document will help maintain consistency across all the

authors of libraries intended to be used in BSL, as well as

between the classroom and the error messages.

Figure 6. Color-coded error message

7.5 Teach highlighting (and other error components).

Instructors and books should explain the components of

error messages to students. While this also may seem ob-

vious, few of us who teach regularly with DrRacket had

noticed that interpreting the highlights required explicit

instruction. IDE developers should provide guides (not just

documentation buried in some help menu) about the seman-

tics of notations such as source highlighting.

Our results further suggest that students need help re-

flecting on the semantics of the textual message compo-

nents as well. Students‘ difficulties with the

―expected/found‖ distinction, for example, are arguably as

much about their failure to carefully read and reflect on the

message text. However, as instructors we must bear in

mind that the visual cues (such as highlights) may dominate

the students‘ focus. Furthermore, errors are stated from the

perspective of the IDE, not the student. When a student

sees ―expected/found‖, they might not initially understand

the process through which DrRacket comes to ―expect‖

anything in particular. Lacking a mental model of this pro-

cess, students default to one (such as ―edit here‖) that the

messages then work against until the student‘s model ma-

tures.

More generally, there is a question about how to teach

CS1 students about IDE features that arise from advanced

CS concepts such as parsing. Programming texts frequent-

ly present formal grammars (through syntax diagrams [3] or

textual BNF) to help explain language syntax; some include

exercises on deciphering text through grammar rules [4].

Unfortunately, the highlighting undermines this effort by

describing syntax rejection in terms of a different process

(parsing) that the students have not been taught, and which

they cannot be expected to understand at an early stage of

their computing education.

7.6 Beware Libraries.

As we examined error messages, we noticed a signifi-

cant source of additional inconsistencies: libraries! We re-

alized that DrRacket does not have style guidelines for

library authors, who were hence each creating their own

language universes. Clearly each programming environ-

ment needs an accompanying Elements of Error Message

Style, and we have one in development for DrRacket: a

four-page sheet that lists allowed words, disallowed words,

and grammar rules for error messages.

8. Related Work

The principles of HCI frame general discussions on the

design of pedagogic programming languages, as well as on

the design of error messages specifically [5]. These reflec-

tions informed our work. Many researchers have studied

various programming tools, such as debuggers; we focus

here only on studies involving error messages themselves.

Alice [6] and BlueJ [7] are two widely used pedagogic

IDEs. Both environments show students the error messages

generated by full-fledged Java compilers. In independent

evaluations involving interviews with students, the difficul-

ty of interpreting the error messages fared amongst the stu-

dents' primary complaints [7,8]. These difficulties have led

professors to develop supplemental material simply to

teach students how to understand the error messages [9].

One evaluation of BlueJ asked the students whether they

found the messages useful [10]. Most did, but it is unclear

what this means, given that they were not offered an alter-

native. The students we interviewed were similarly appre-

ciative of the error messages of DrRacket, despite their

struggles to respond to them. That said, our study shows

that DrRacket‘s errors are still a long way from helping the

students, and other recent work [11] also presents evidence

of this.

There are still relatively few efforts to evaluate the

learning impact of pedagogic IDEs [12]. Gross and Powers

survey recent efforts [13], including, notably, those on Lego

Mindstorms [14] and on Jeliot 2000 [15]. Unlike these other

evaluations, we did not evaluate the impact of the IDE as a

whole. Rather, we attempted to tease out the effect of indi-

vidual components.

A number of different groups have tried to rewrite the

error messages of professional Java compilers to be more

suitable for beginners. The rewritten error messages of the

Gauntlet project [16], which have a humorously combative

tone, explain errors and provide guidance. The design was

not driven by any observational study; a follow-up study

discovered that Gauntlet was not addressing the most

common error messages [17]. The Karel++ IDE adds a

spellchecker [18], Lerner S. et al explains the type error

messages of ML by stating a modification that would make

the code type [19], and STLFilt rewrites the error messages

of C++ [20]; none has been evaluated formally against real

students behavior.

Early work on the pedagogy of programming sought to

classify the errors novice programmers make when using

assembly [21] or Pascal [22]. More recent work along the

same lines studies BlueJ [23,24], Eiffel [25], and Helium

[26]. Others have studied novices‘ behavior during pro-

gramming sessions. This brought insight on novices‘ de-

bugging strategies [27], cognitive inclination [28], and

development processes [29]. Our work differs in not study-

ing the students' behavior in isolation; rather, we focus on

how the error messages influence the students' behavior.
Coull [30], as well as Lane and VanLehn [31] have also

defined subjective rubrics, though they evaluate the stu-

dents‘ programming sessions rather than the success of

individual error messages. In addition, vocabulary and

highlighting were not in the range of considered factors

affecting student responses to errors. Coull also added ex-

planatory notes to the error messages of the standard Java

compiler based on their observations. These notes made

experimental subjects significantly more likely to achieve

an ideal solution to short exercises.
Nienaltowski et al. [32] compared the impact of adding

long-form explanation to an error message, and of adding a

highlight on three different error messages, in a short web-

based experiment. They found that the former has no im-

pact, while the later impairs performance slightly. Unfortu-

nately, the experiment‘s design has many threats to

validity, some of which the paper acknowledged.

9. Perspective and Ongoing Work

Studying students‘ fine-grained interactions with error mes-

sages is humbling, but highly informative. The DrRacket

team (to which we belong) has spent years developing an

IDE tailored for beginning students. Many of DrRacket‘s

current features arose from our observations of student

struggles in classes and labs. However, it wasn‘t until we

collected a large, concrete, detailed data set on students‘

interactions with errors that we appreciated the problems

reported in this paper.

Our goal with this paper is twofold: first, to advocate for

and illustrate this kind of work to others who develop IDEs

for particularly audiences; second, to raise design issues

that should apply broadly across IDEs. Our recommenda-

tions about color-coded highlights, consistent vocabulary,

non-biased error messages, and pedagogy are not specific

to Racket. They should apply just as well in any other pro-

gramming language used for teaching, including those with

graphical syntaxes (to the extent that they have error mes-

sages).

Going forward, we need to deploy the recommendations

presented here, then measure their impact on students. Im-

pact can take several forms. At one level, we are simply

interested as whether students make fewer errors using our

revised IDE. We should also look at other metrics, howev-

er, such as whether the number of iterations needed to fix

an error decreases and whether students experience less

frustration with the revised messages. DrRacket also has a

wide user base, including middle-school students in after-

school programs, high school students, and college stu-

dents. We cannot assume that one style of errors will fit

all.

Our work also leaves open interesting questions about

the interaction of parsing strategy and error message con-

tent. At a recent talk on this work, a colleague asked

whether we had contrasted DrRacket‘s expression-

highlighting approach to a more conventional compiler

error based on expected tokens. We have also seen exam-

ples in our dataset on which the error message appears

counterfactual unless the user understands the parsing strat-

egy. The latter is obviously unsuitable for beginners, but

the fix is not obvious, as a different parsing strategy would

expose odd errors in other programs.

In general, the design of error messages and their inter-

action with programming language technology is a wide

open and fascinating area. Developers of IDEs for begin-

ners are working on several ideas that minimize the effect

of programming errors, but these often come at a cost of

scalability as students (quickly) advance to writing more

sophisticated programs. Our work shows that IDE inter-

face design is not simply an HCI question, but one with

deep roots in programming languages technologies. We

invite more PL researchers to join us for the ride.

Acknowledgments

Danielle Gilmore collected and coded the data for the quiz

in Section 6. Fatih Köksal generously provided his re-

cording and playback software. Nate Krach, Janice Gobert,

and Ryan S. de Baker offered extensive advice about social

science methodology, analysis, and study design. Tamara

Munzner discussed study design and provided useful refer-

ences. Jesse Tov, Glynis Hamel, and Amy Greenwald gen-

erously gave class time and followup information for our

vocabulary quiz. Matthias Felleisen offered valuable dis-

cussion and comments on an early version of the paper.

Several U.S. National Science Foundation grants supported

the research leading up to and including this project.

10. References

[1] G. Marceau, K. Fisler, and S. Krishnamurthi, ―Measuring the Effec-
tiveness of Error Messages Designed for Novice Programmers,‖
Proceedings of the Symposium on Computer Science Education,
2011.

[2] P.I. Pavlik, N. Presson, G. Dozzi, and B. Macwhinney, ―The FaCT
(fact and concept) system: A new tool linking cognitive science with
educators,‖ Proceedings of the Conference of the Cognitive Science
Society, D. McNamara & G. Trafton, eds., 2007, pp. 397-402.

[3] N. Wirth, ―The Programming Language Pascal,‖ Acta Informatica,
vol. 1, 1971, pp. 35-63.

[4] S. Bloch, Picturing Programs, College Publications, 2011.

[5] V.J. Traver, ―On compiler error messages: what they say and what
they mean,‖ Technical Report, Computer Languages and Systems
Department, Jaume-I University, 2010.

[6] B. Moskal, D. Lurie, and S. Cooper, ―Evaluating the effectiveness of
a new instructional approach,‖ Proceedings of the Symposium on
Computer Science Education, 2004, pp. 75-79.

[7] D. Hagan and S. Markham, ―Teaching Java with the BlueJ environ-
ment,‖ Proceedings of Australasian Society for Computers in Learn-
ing in Tertiary Education Conference, 2000.

[8] J.S. Rey, From Alice to BlueJ: a transition to Java, Masterʼs thesis,
School of Computing, Robert Gordon University, 2009.

[9] M.M. Ben-Ari, ―Compile and Runtime Errors in Java,‖
http://stwww.weizmann.ac.il/g-cs/benari/oop/errors.pdf, accessed
June 15, 2010.

[10] K. Van Haaster and D. Hagan, ―Teaching and Learning with BlueJ:
an Evaluation of a Pedagogical Tool,‖ Issues in Informing Science
and Information Technology, vol. 1, 2004, pp. 455-470.

[11] M. Crestani, ―Experience report: growing programming languages
for beginning students,‖ Proceedings of the International Conference
on Functional Programming, 2010.

[12] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J.
Bennedsen, M. Devlin, and J. Paterson, ―A survey of literature on the
teaching of introductory programming,‖ ACM SIGCSE Bulletin, vol.
39, Dec. 2007, pp. 204-223.

[13] P. Gross and K. Powers, ―Evaluating assessments of novice pro-
gramming environments,‖ Proceedings of the International Work-
shop on Computing Education Research, New York, New York,
USA: 2005, pp. 99-110.

[14] B.S. Fagin and L. Merkle, ―Quantitative analysis of the effects of
robots on introductory Computer Science education,‖ Journal on Ed-
ucational Resources in Computing, vol. 2, 2002, pp. 1-18.

[15] R.B.-B. Levy, M. Ben-Ari, and P.A. Uronen, ―The Jeliot 2000 pro-
gram animation system,‖ Computers & Education, vol. 40, 2003, pp.
1-15.

[16] T. Flowers, C. Carver, and J. Jackson, ―Empowering students and
building confidence in novice programmers through Gauntlet,‖ Fron-
tiers in Education, vol. 1, 2004, p. T3H/10 - T3H/13.

[17] J. Jackson, M. Cobb, and C. Carver, ―Identifying Top Java Errors for
Novice Programmers,‖ Proceedings of the Frontiers in Education
Conference, 2005, p. T4C–24.

[18] C. Burrell and M. Melchert, ―Augmenting compiler error reporting in
the Karel++ microworld,‖ Proceedings of the Conference of the Na-
tional Advisory Committee on Computing Qualifications, 2007, p.
41–46.

[19] B.S. Lerner, M. Flower, D. Grossman, and C. Chambers, ―Searching
for type-error messages,‖ Programming language design and imple-
mentation, 2007, p. 425.

[20] L. Zolman, ―STLFilt: An STL error message decryptor for C++,‖
http://www.bdsoft.com/tools/stlfilt.html, accessed June 10, 2010,
2005.

[21] J.M. Chabert and T.F. Higginbotham, ―An Investigation of Novice
Programmer Errors in IBM 370 (OS) Assembly Language,‖ Pro-
ceedings of the ACM Southeast Regional Conference, 1976, pp. 319-
323.

[22] J.C. Spohrer and E. Soloway, ―Novice mistakes: are the folk wis-
doms correct?,‖ Communications of the ACM, vol. 29, 1986.

[23] N. Ragonis and M. Ben-Ari, ―On understanding the statics and dy-
namics of object-oriented programs,‖ ACM SIGCSE Bulletin, vol. 37,
2005, pp. 226-230.

[24] M.C. Jadud, ―A First Look at Novice Compilation Behaviour Using
BlueJ,‖ Computer Science Education, vol. 15, Mar. 2005, p. 25–40.

[25] M.-H. Ng Cheong Vee, K. Mannock, and B. Meyer, ―Empirical
study of novice errors and error paths in object-oriented program-
ming,‖ Proceedings of the Conference of the Higher Education
Academy, Subject Centre for Information and Computer Sciences,
2006, pp. 54-58.

[26] J. Hage and P.V. Keeken, ―Mining Helium programs with Neon,‖
Technical Report, Department of Information and Computing Sci-
ences, Utrecht University, 2007.

[27] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L. Thomas,
and C. Zander, ―Debugging: the good, the bad, and the quirky — a
qualitative analysis of novicesʼ strategies,‖ Proceedings of the Sym-
posium on Computer Science Education, 2008, pp. 163-167.

[28] M.C. Jadud, ―Methods and tools for exploring novice compilation
behaviour,‖ Proceedings of the International Workshop on Compu-
ting Education Research, 2006, p. 73–84.

[29] M.F. Köksal, R.E. Başar, and S. Üsküdarlı, ―Screen-Replay: A Ses-
sion Recording and Analysis Tool for DrScheme,‖ Proceedings of
the Scheme and Functional Programming Workshop, Technical Re-
port, California Polytechnic State University, CPSLO-CSC-09-03,
2009, pp. 103-110.

[30] N.J. Coull, SNOOPIE: development of a learning support tool for
novice programmers within a conceptual framework, PhD Thesis,
School of Computer Science, University Of St. Andrews, 2008.

[31] H. Chad Lane and K. VanLehn, ―Intention-based scoring: An ap-
proach to measuring success at solving the composition problem,‖
Proceedings of the Symposium on Computer Science Education, New
York, New York, USA: 2005, pp. 373-377.

[32] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, ―Compiler Error
Messages: What Can Help Novices?,‖ Proceedings of the Technical
Symposium on Computer Science Education, 2008, pp. 168-172.

11. APPENDIX A — VOCABULARY QUIZ

Circle one instance of each vocabulary term on the code below. Label each circle with the question number. For example, the circle la-
beled Q0 is an instance of the term ―Return Type‖.

If you do not know what a term means, write a big ―X‖ on it (in the left column). The right column gives examples of each term as used in
DrScheme‘s error messages. The errors are irrelevant otherwise.

Vocabulary term Sample usage

Q1. Argument >: expects at least 2 arguments, given 1

Q2. Selector this selector expects 1 argument, here it is provided 0 arguments

Q3. Procedure this procedure expects 2 arguments, here it is provided 0 arguments

Q4. Expression expected at least two expressions after `and', but found only one expression

Q5. Predicate this predicate expects 1 argument, here it is provided 2 arguments

;; (make-book number string string number number bst bst)

(define-struct book (isbn title author year copies left right))

;; this-edition?: bst number number -> boolean

;; Consumes a binary search tree, an ISBN number, and a year, and produces true

;; if the book with the given ISBN number was published in the given year

(define (this-edition? a-bst isbn-num year)

 (cond [(symbol? a-bst) false]

 [(book? a-bst)

 (cond [(= isbn-num (book-isbn a-bst))

 (= year (book-year a-bst))]

 [(< isbn-num (book-isbn a-bst))

 (this-edition? (book-left a-bst) isbn-num year)]

 [else (this-edition? (book-right a-bst) isbn-num year)])]))

Q0

