
Introducing TM into the
“Real World”

Ulrich Drepper

OS Vendor Situation

Hardware
BIOS

Kernel
Runtime

Libraries

Utilities Applications

Red Hat Enterprise Linux

OS Vendor Situation

Hardware
BIOS

Kernel
Runtime

Libraries

Utilities Applications

OS Vendor Situation

Hardware
BIOS

RPM

1000s

RPM RPM RPMRPMRPMRPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

Kernel
C Library

Compiler

Plus 3rd Party Applications

Hardware
BIOS

RPM
RPM RPM RPMRPMRPMRPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM

Challenges

 No company can effort maintaining 1000s of
packages

 Constantly updated upstream packages
● Any local change means additional work
● Pushing changes upstream requires generalization

 Different guarantees
● Security fixes
● & + bug fixes
● & + API/ABI guarantees

Hardware
BIOS

 Active
Development

RPM
RPM RPM RPMRPMRPMRPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM

Levels of Support

Hardware
BIOS

RPM
RPM RPM RPMRPMRPMRPM

 API/ABI
GuaranteesRPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM

Levels of Support

Levels of Support

Hardware
BIOS

RPM
RPM RPM RPMRPMRPMRPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

RPM RPM RPM RPM RPM RPM

 Security &
 Bug FixesRPM RPM RPM RPM RPM RPM

RPM

Guarantees

 No ABI breakage
● At all within major release
● For core packages among all releases

 No regressions
● Same performance characteristics

 Updated
● Technology update during long life-time of release

Programming Practices

 Dynamic linking prevalent (good)
 Programmers misuse dynamic linking for abstraction (bad)
 Result:

● Every DSO might find their way (directly or indirectly) into some
applications

● No incompatible runtimes possible system-wide
● Duplicated system functionality likely cause problems

Performing TM implementation

 Dependencies
● Hardware

● Lock-free data structure implementation
● Possibly virtualization

● Thread implementation
● OS Scheduler

 Deep integration into runtime needed for performance
● Code inlined by compiler
● Fast access to thread-local data

What Does This Mean?

 There can only be one TM implementation
 No negative performance impact on code not using TM

● Strong isolation likely not a possibility
 Implementation must be flexible

● Handle different STM implementations
● No clear overall winner

● Handle (different) HTM implementations
● Co-exist with HTM-based lock-free data structures
● Future-safe in general

● At least backward compatible

TM In Existing Code

 Unlikely only new code used in TM binaries
 TM-ify existing code
 Happens over time

● (Possible) performance problem found by profiling
● Create TM version of library interface
● Rinse and repeat
● For actively supported code part of OS vendor's job

 Must not require recompilation code using libraries
 Examples:

● String functions: strcpy memcpy memmove
● Needs support for STM

● malloc: special version needed

Separate Code Paths

 Remember: no slowdown for non-TM code
 Not possible:
int foo(int *arr, int b) {

 if (in_TM) begin_tm();

 int c = 42;

 for (i = 0; i < b; ++i)

 int v = in_TM ? read_val4(&arr[i]) : arr[i];

 c = MAX(v,c);

 }

 if (in_TM) end_tm();

 return c == 42 ? c : -1;

}

 Not realistic for more variants (HTM, …)
 Increased I-cache footprint

Starting Transaction

 One or more implementations: select one
 On restart: maybe select another

variant = begin_transaction(available_set);

switch (variant) {

 case var_single_thread: goto code_single_thread;

 case var_stm: goto code_stm;

 case var_htm1: goto code_htm1;

 case var_htm2: goto code_htm2;

}

 begin_transaction is setjmp-like for restart

Mixing TM-safe and TM-unsafe Code

 Initially most code not TM-safe

int foo(int *arr, int b) {

 __tm_atomic {

 int s = 0;

 for (int i = 0; i < b; ++i)

 S = bar(arr[i], s);

 }

 return s;

}

 What if bar is legacy code?
● With side effects?

 Must annotate existing functions

Declaring Existing Code

 Pure functions need no TM-safe variant
● __attribute__((tm_pure))

 Functions with TM-variants must be recognizable
● __attribute__((tm_callable))

 Functions which might get TM-variants should test for them
● __attribute__((tm_unknown))

 Functions which cannot be TM-safe (side effects, …)
● __attribute__((tm_irrevocable))

 Header files indicate which case

Minimize Changes

 Minimize header file changes:
● Marking all functions creates conflicts with upstream sources
● Better: block-level marking

● #pragma TM push(tm_callable)
● Or: compiler command line switches

 Minimize source changes:
● No marking of individual memory accesses

● Required compiler support
● Still: optimizations for thread-local memory access

● Aliasing analysis important
● No need to duplicate source code to get multiple variants

Minimize Changes

 Generate variants

Compiler knows all variants (command line parameter)
● Compiler decides automatically for static functions
● Attributes in header files specific tm_callable, etc
● Function attributes to overwrite

int __attribute__((tm(“stm,asf”)))

foo(int *arr, int b) {

 __tm_atomic {

 ...

 }

 return s;

}

Function Pointers

 Two possibilities
● Function prologue contains demultiplexer
● Select variant when determining pointer

 Problem:
● TM variant not represented in type system
● How to ensure calling through function pointer is safe?
● Variant must be determinable from pointer
● Demultiplexer adds overhead

● Violates “no performance penalty” condition
● Caller might make wrong initial decision about mode

● Costly restart
● Not rare: C++ virtual function tables

Representing Variants

 Separate functions for variants really needed
 How to address them?
 Possibility #1: name mangling

● Conflict with other name mangling (e.g., C++)
● Not scalable with many variants

 Possibility #2: alternate symbol tables
● ELF demands currently one symbol table
● Not really a problem to have multiple
● One table for each variant

Summary

 Need to describe current and future form of existing interfaces
 Minimal changes to do that
 Deep integration into system

● Compiler, executable format, runtime, …
 Code made TM-aware must be picked up automatically
 No overhead in non-TM-aware variants
 Flexible ABI for future extension with backward compatibility
 Integration with HTM use for lock-free data structures

Velox: http://www.velox-project.eu/

Questions?

drepper@redhat.com | people.redhat.com/drepper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

