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Challenges

 No company can effort maintaining 1000s of 
packages

 Constantly updated upstream packages
● Any local change means additional work
● Pushing changes upstream requires generalization

 Different guarantees
● Security fixes
● & + bug fixes
● & + API/ABI guarantees
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Guarantees

 No ABI breakage
● At all within major release
● For core packages among all releases

 No regressions
● Same performance characteristics

 Updated
● Technology update during long life-time of release



Programming Practices

 Dynamic linking prevalent (good)
 Programmers misuse dynamic linking for abstraction (bad)
 Result:

● Every DSO might find their way (directly or indirectly) into some 
applications

● No incompatible runtimes possible system-wide
● Duplicated system functionality likely cause problems



Performing TM implementation

 Dependencies
● Hardware

● Lock-free data structure implementation
● Possibly virtualization

● Thread implementation
● OS Scheduler

 Deep integration into runtime needed for performance
● Code inlined by compiler
● Fast access to thread-local data



What Does This Mean?

 There can only be one TM implementation
 No negative performance impact on code not using TM

● Strong isolation likely not a possibility
 Implementation must be flexible

● Handle different STM implementations
● No clear overall winner

● Handle (different) HTM implementations
● Co-exist with HTM-based lock-free data structures
● Future-safe in general

● At least backward compatible



TM In Existing Code

 Unlikely only new code used in TM binaries
 TM-ify existing code
 Happens over time

● (Possible) performance problem found by profiling
● Create TM version of library interface
● Rinse and repeat
● For actively supported code part of OS vendor's job

 Must not require recompilation code using libraries
 Examples:

● String functions: strcpy memcpy memmove
● Needs support for STM

● malloc: special version needed



Separate Code Paths

 Remember: no slowdown for non-TM code
 Not possible:
int foo(int *arr, int b) {

  if (in_TM) begin_tm();

  int c = 42;

  for (i = 0; i < b; ++i)

    int v = in_TM ? read_val4(&arr[i]) : arr[i];

    c = MAX(v,c);

  }

  if (in_TM) end_tm();

  return c == 42 ? c : -1;

}

 Not realistic for more variants (HTM, …)
 Increased I-cache footprint



Starting Transaction

 One or more implementations: select one
 On restart: maybe select another

variant = begin_transaction(available_set);

switch (variant) {

  case var_single_thread: goto code_single_thread;

  case var_stm: goto code_stm;

  case var_htm1: goto code_htm1;

  case var_htm2: goto code_htm2;

}

 begin_transaction is setjmp-like for restart



Mixing TM-safe and TM-unsafe Code

 Initially most code not TM-safe

int foo(int *arr, int b) {

  __tm_atomic {

    int s = 0;

    for (int i = 0; i < b; ++i)

      S = bar(arr[i], s);

  }

  return s;

}

 What if bar is legacy code?
● With side effects?

 Must annotate existing functions



Declaring Existing Code

 Pure functions need no TM-safe variant
● __attribute__((tm_pure))

 Functions with TM-variants must be recognizable
● __attribute__((tm_callable))

 Functions which might get TM-variants should test for them
● __attribute__((tm_unknown))

 Functions which cannot be TM-safe (side effects, …)
● __attribute__((tm_irrevocable))

 Header files indicate which case



Minimize Changes

 Minimize header file changes:
● Marking all functions creates conflicts with upstream sources
● Better: block-level marking

● #pragma TM push(tm_callable)
● Or: compiler command line switches

 Minimize source changes:
● No marking of individual memory accesses

● Required compiler support
● Still: optimizations for thread-local memory access

● Aliasing analysis important
● No need to duplicate source code to get multiple variants



Minimize Changes

 Generate variants

Compiler knows all variants (command line parameter) 
● Compiler decides automatically for static functions
● Attributes in header files specific tm_callable, etc
● Function attributes to overwrite

int __attribute__((tm(“stm,asf”)))

foo(int *arr, int b) {

  __tm_atomic {

    ...

  }

  return s;

}



Function Pointers

 Two possibilities
● Function prologue contains demultiplexer
● Select variant when determining pointer

 Problem:
● TM variant not represented in type system
● How to ensure calling through function pointer is safe?
● Variant must be determinable from pointer
● Demultiplexer adds overhead

● Violates “no performance penalty” condition
● Caller might make wrong initial decision about mode

● Costly restart
● Not rare: C++ virtual function tables



Representing Variants

 Separate functions for variants really needed
 How to address them?
 Possibility #1: name mangling

● Conflict with other name mangling (e.g., C++)
● Not scalable with many variants

 Possibility #2: alternate symbol tables
● ELF demands currently one symbol table
● Not really a problem to have multiple
● One table for each variant



Summary

 Need to describe current and future form of existing interfaces
 Minimal changes to do that
 Deep integration into system

● Compiler, executable format, runtime, …
 Code made TM-aware must be picked up automatically
 No overhead in non-TM-aware variants
 Flexible ABI for future extension with backward compatibility
 Integration with HTM use for lock-free data structures

Velox: http://www.velox-project.eu/



Questions?

drepper@redhat.com | people.redhat.com/drepper
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