
IBM T. J. Watson Research Center

IBM STM Interface and X10 Extensions

Maged Michael and Vijay Saraswat

IBM T. J. Watson Research Center

Outline
STM Runtime Interface

X10 Extensions

Obstacles to a Single TM StandardObstacles to a Single TM Standard

2 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Runtime Interface

3 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Acknowledgements

Colin Blundell

Trey Cain

Calin Cascaval

Sid Chatterjee

Stefanie ChirasStefanie Chiras

Takuya Nakaike

Ken Mizuno

Raul Silvera

Michael Spear

Christoph von Praun

Michael Wang

Peng Wu

4 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

IBM Common STM Runtime

Java JIT Compiler C/C++ compiler
C/C++ ProgramsJava Programs

STM Runtime
Commodity Architectures Simulated HW Acceleration

Implemented as a C library

A version released to open source (June 2008)

STM runtime supports:
– A Java JIT compiler STM implementation

– C/C++ STM compilersC/C++ STM compilers

– Binary of IBM STM XL compiler released in May 2008

Runs on:
C dit l tf AIX/Li PPC/X86

5 IBM STM API and X10 Extensions

– Commodity platforms: AIX/Linux PPC/X86

– Hardware acceleration models

IBM T. J. Watson Research Center

STM Interface – Per-Thread STM Descriptors
void * stm_thr_init();

Creates a new per-thread STM descriptor

Returns a pointer to per-thread STM descriptorReturns a pointer to per thread STM descriptor

void * stm_desc();

id t th ti (id * d)

Returns a pointer to per-thread STM descriptor of the current thread

void stm_thr_retire(void * mydesc);

Retire the current thread’s descriptor

6 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Transaction Begin and End
int stm_begin(void * buf,void * mydesc,char * fname,int line);

Arguments:
– buf: pointer to a buffer for use by longjmp on abort

– mydesc: pointer to per-thread transactional descriptor

– fname: string representing the filename where the code of the transaction occurs, e.g., __FILE__
• Used for per-static-transaction statistics

li i t ti th li b h th d f th t ti t t LINE– line: integer representing the line number where the code of the transaction starts, e.g., __LINE__

Returns an integer representing encountered state:
• INACTIVE (started outermost transaction)
• ACTIVE (nested)()
• ABORTED (nested)
• NON_SPECULATIVE (nested)

int stm end(void * mydesc);int stm_end(void mydesc);

Returns a Boolean value representing outcome:
– SUCCESS

– FAILURE

7 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Transaction Status and Validation
int in_transaction(void * mydesc);

Returns a Boolean value indicating whether the current thread is running inside a
transaction or not

int stm_validate(void * mydesc);

Returns a Boolean result indicating whether the current transaction’s read set is g
valid or not

8 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Non-Speculative Mode
int become_inevitable(void * mydesc);

Try to get into inevitable (non-speculative) mode

If successful, then this transaction is guaranteed not to be abortedIf successful, then this transaction is guaranteed not to be aborted

The transaction may execute non-speculative actions with irrevocable effects

Returns Boolean value indicating whether the transaction was able or not to enter
the non-speculative modethe non speculative mode

9 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Abort if Speculative
int stm_abort(void *mydesc);

Aborts the current transaction if running speculatively

Returns integer value representing status before abortReturns integer value representing status before abort
– INACTIVE

– ACTIVE

ABORTED– ABORTED

– NON_SPECULATIVE

Note:
Th t ti i t b t d if it i i i l ti d– The transaction is not aborted if it is running in non-speculative mode

10 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Transactional Reads
void * stm_read_ptr(void * volatile * addr,void * mydesc);

float stm_read_float(float volatile * addr,void * mydesc);

... <other basic data types>

unsigned long stm_read_ulong(unsigned long volatile * addr,void * mydesc);

unsigned long long stm_read_ull(unsigned long long volatile * addr,
void * mydesc);

A tArguments:
– addr: pointer to the variable being read

Returns the value of the variable being read from the point of view of the current
transactiontransaction

11 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Transactional Writes
void stm_write_ptr(void * volatile * addr, void * val,void * mydesc);

void stm_write_float(float volatile * addr, float val,void * mydesc);

... <other basic data types>

void stm_write_ulong(unsigned long volatile * addr, unsigned long val,
void * mydesc);

void stm_write_ull(unsigned long long volatile * addr,
unsigned long long val, void * mydesc);g g g

Arguments:
– addr: pointer to the variable to be written

l l t b itt– val: value to be written

12 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Memory Allocation

void * stm_malloc(size_t sz,void * mydesc);

void * stm_calloc(size_t ne,size_t sz,void * mydesc);

Only memory allocations inside transactions need to call special STM functions

void stm_free(void * ptr,void * mydesc);

Arguments and return values:
Same as standard malloc/calloc/free– Same as standard malloc/calloc/free

13 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Writes to Local Variables

void stm_checkpoint(char * addr, int size,void * mydesc);

Local variables initialized outside the transactions need to be checkpointed for
rollback on abort, before being written inside a transaction

Arguments:
– addr: pointer to local variable

– size: size of local variable– size: size of local variable

int found = 0; ...

stm_begin(...); ...

found = 1; ...

stm_end();

if (found) ...pre-transaction value needs to be restored on abortpre-transaction value needs to be restored on abort

14 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Handling Address-Taken Stack Variables
If addresses of local variables are passed as arguments to function calls, the STM
may end up treating these variables as shared

STM needs to handle accesses to these variables consistently as local

void stm_stack_range(void * addr, int size, void *mydesc);

Arguments:
– addr: beginning of rangeaddr: beginning of range

– size: size of range

stm_begin(...); ...

int var = a; ...

foo(&var); ...

stm_end();

Void foo(int * ptr) {

*ptr = b;

}

Treated as local variable Must be treated as local for consistency

15 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Interface – Collecting Statistics
void stm_stats_out();

Saves a snapshot of STM stats

Inherent transactional stats

65536 READ_WRITE_COMMITS
69528 READ_SET_VALIDATIONS

0 READ_ENCOUNTER_RETRIES
0 SIGNAL_RETRIESInherent transactional stats

Implementation-specific stats

Stats per static transaction

0 WRITE_ACQUIRE_RETRIES
0 READ_VALIDATION_RETRIES

525712 WRITE_BARRIERS
13419 NUM_SILENT_WRITES

0 SILENT_WRITES_BECAME_READS
0 WRITE_BARRIERS_OUTSIDE_TXNS

131010 WRITE_BARRIERS_FOR_STACK
9730 DUPLICATE_WRITES9 30 U C _ S

0 DUPLICATE_WRITE_CONFLICT_SET
10726816 READ_BARRIERS

0 READ_BARRIERS_OUTSIDE_TXNS
0 READ_BARRIERS_FOR_STACK

4225604 DUPLICATE_READS
6874933 DUPLICATE_READ_CONFLICT_SET

0 USEFUL_DUP_READ_CHECKS
0 USELESS DUP READ CHECKS0 USELESS_DUP_READ_CHECKS

934007 BLOOM_FILTER_CHECKS
102826 BLOOM_FILTER_MATCHES
88121 READ_AFTER_WRITE_MATCHES

10638695 READ_LIST_SIZES
384972 WRITE_LIST_SIZES

6501212 READ_SET_SIZES
384972 WRITE_SET_SIZES

653 READ LIST MAX SIZE653 READ_LIST_MAX_SIZE
230 WRITE_LIST_MAX_SIZE
272 READ_SET_MAX_SIZE
230 WRITE_SET_MAX_SIZE

1 MAX_NESTING
99.20 AVG_READ_SET_SIZE
5.87 AVG_WRITE_SET_SIZE

162.33 AVG_READ_LIST_SIZE

16 IBM STM API and X10 Extensions

5.87 AVG_WRITE_LIST_SIZE
0 TOTAL_RETRIES

0.00 AVG_RETRIES_PER_TXN
0.00 AVG_CHECKPOINTING_CALLS_PER_TXN
39.39 PCT_DUPLICATE_READS
64.09 PCT_DUPLICATE_READ_CONFLICT_SET
1.85 PCT_DUPLICATE_WRITES
2 55 PCT SILENT WRITES

IBM T. J. Watson Research Center

STM Interface – Sub-Operations

void stm_read_bloom_match(void * addr, int size, void * mydesc);

Interface for uncommon sub-operations, in order to enable inlining of common sub-
operations

void expand_reads(void * mydesc);

void stm_cleanup_aborted(void * mydesc);

...

Interface to fences and validation checks, in order to enable aggregation of fences
and validation checks

void stm_read_orec_check(void * addr, void * mydesc);

void stm_read_orec_mem_fence();

void stm_read_from_mem(void * addr, int size, void * mydesc);

...

17 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

X10 Extensions

18 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

X10 Atomic Constructs
atomic:

– Unconditional atomic block
atomic {

S;

}

henwhen:

– Conditional atomic block

– Atomically guarantees that the condition c holds and executes the atomic
section S.

when(c) {

S;

}

section S.

19 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

X10 Common Patterns
Atomic blocks with static data sets

atomic {

x = y + z;

}

Shared data accessed in atomic sections that is guaranteed to have no
conflicts

atomic {

x = y + z;

}

Guaranteed no conflicts Need conflict detection

20 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Extensions to Exploit Patterns
Capability to specify:

– Shared variables that may be read, written, or read and written inside an atomic
block

Whether the identified data set is complete or not– Whether the identified data set is complete or not

– Shared variables that are guaranteed to have no conflicts

@fun(rd(y), wr(w), rd_wr(x), nc(z)) atomic {((y), (), _ (), ()) {

w = x + y + z;

x = x + w;

}

@fun(rd(y),wr(w), rd_wr(x), complete) atomic {...}

or

21 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

STM Extensions

Add address range to the read set and write set of the current

void stm_add_to_read_set(void * addr,int size, void * mydesc);

void stm_add_to_write_set(void * addr,int size, void * mydesc);

g
transaction

void stm_no_conflict(void * addr,int size, void * mydesc);y

Ignore subsequent transactional reads and writes to locations in
the address range

void stm_data_set_complete(void * mydesc);

Indicate that the specified transactional data set is completeIndicate that the specified transactional data set is complete

22 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Obstacles to a Single TM Standard

23 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Variety of TM Features and Requirements
Allowing non-speculative actions

– e.g., to execute I/O, system calls

Non-blocking progressNon blocking progress
– e.g., in real-time apps

Allowing user abort, abort on exception
– e.g., for convenience of recovery

Strong atomicity
– e.g., for simulation of complex atomic operations

Privatization-safety, publication-safety

Open nesting, transactional boosting

Allowing condition variablesAllowing condition variables

24 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Limitations on TM Features
Some TM Features are contradictory

– Some features cannot be allowed concurrently without programming
restrictions

E N bl ki i h fli i h i i h • E.g., Non-blocking transactions that may conflict with transactions with
non-speculative actions

– Some features have per-transaction restrictions:
• E.g., User abort after executing non-speculative actions

Unused features are often costly
– Performance overheads

• Strong atomicity• Strong atomicity
– Complexity of combination with other features

• Non-speculative actions and strong atomicity

25 IBM STM API and X10 Extensions

No One TM Standard Fits All

IBM T. J. Watson Research Center

Variety of Performance Priorities
Performance characteristics

– High/low Parallelism

– Low/high Overheads

– Graceful/fall-off-a-cliff degradation

Performance depends on TM implementation options
– Conflict detection policies

Sharp trade-offs among performance characteristics

– Contention management

– Consistency granule, e.g., object/block-based, block size

Sharp trade-offs among performance characteristics
– e.g., graceful-degradation vs. low best-case overheads

Adaptivity is often costly

Performance is a primary motivation for many TM uses

26 IBM STM API and X10 Extensions

A single omni-featured TM is likely to deliver
inadequate performance

IBM T. J. Watson Research Center

A Multi-TM Standard?
Allow multi-TM co-existence

Can this be done without compromising code modularity?

and without an explosion in feature combinations?

A single TM standard will have to make careful choices that
hopefully capture the most useful features of TM

Thank YouThank You

27 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

BACKUP

28 IBM STM API and X10 Extensions

IBM T. J. Watson Research Center

Constructs

Multiple TM instances

__tm_attribute((non_blocking)) __tm_atomic {r = x;};

__tm_attribute((nonspeculative)) __tm_critical {r = y;}

29 IBM STM API and X10 Extensions

