
1© Sun Microsystems, Inc., 2009 All rights reserved.

Mark Moir, Principal Investigator
Scalable Synchronization Research Group
Sun Microsystems Laboratories

Some thoughts on
TM Interfaces

2© Sun Microsystems, Inc., 2009 All rights reserved.

TM involves many interfaces
• Interfaces for programmers
> Expedient transactional library interfaces for supporting

experimentation (DSTM, DSTM2, TL2, others, ...)
> Static multi-location operations (e.g., DCAS, n-CAS)
> Wrappers for lock elision (e.g., U Texas)
> TM features/extensions for high-level programming

languages (C, C++, JavaTM, ...)

• Such interfaces (except maybe first category) are
clear candidates for discussion and (eventual)
standardisation.

3© Sun Microsystems, Inc., 2009 All rights reserved.

TM involves many interfaces
• Compiler-library interfaces
> Intel ABI for STM C++
> Sun compiler-library interface
> ...

• Less clear whether discussion, agreement,
standardisation is necessary
• Still, aids experimentation with modified/alternative

components (e.g., runtime library, compiler)
• To be “standard”, must be architecture independent
• To be flexible, avoid premature optimisation

4© Sun Microsystems, Inc., 2009 All rights reserved.

TM involves many interfaces
• Other runtime interfaces
> debugger
> performance instrumentation
> ...

• Yossi proposes interfaces to support debugging for
different TM runtimes, different debuggers
• Flexibility, generality, avoidance of duplicated effort
• Worthwhile to discuss and eventually standardise

5© Sun Microsystems, Inc., 2009 All rights reserved.

Hardware support
• Various hardware features proposed, with various

interfaces:
> Best-effort HTM (BEHTM), as in Sun's Rock
> AMD's Advanced Synchronisation Facility (ASF)
> Read Set Monitoring (RSM)
• Intel's support for HASTM
• Similar mechanism discussed on Dice blog
• Rochester's Alert On Update (AOU)

> Interfaces for supporting mixed hardware-software
unbounded TM implementations
• Stanford “Architectural Semantics” paper, LogTM and friends,

UFO-TM (Zilles), to name a few

6© Sun Microsystems, Inc., 2009 All rights reserved.

Interfaces for hardware support
• Discussing and standardising hardware interfaces is

both critical and impossible
• Critical:
> how can use become widespread if hardware features all

have different interfaces?
> will lack of cohesion undermine support for hardware

features?
• Impossible:
> features must be integrated into different ISAs, therefore

must be different
> corporate secrecy

7© Sun Microsystems, Inc., 2009 All rights reserved.

The usual approach
• Most of code base architecture independent, small

pieces machine dependent where necessary
• No need to port entire code base to new platforms
• Example: SolarisTM defines operations such as

atomic_cas_8,implemented using cas on
SPARCⓇ, cmpxchgb on x86.
• This works because cas and cmpxchgb have

same “shape”, functionality.
• Can we do this with TM hardware features?

8© Sun Microsystems, Inc., 2009 All rights reserved.

Not so simple for TM features
• Different features have different interfaces, purposes
• No hope to hide them away in simple, isolated

machine-dependent code
• Even closely related features differ significantly
> e.g., RSM features differ on how interference is

discovered (trap vs. lightweight polling)
• Different vendors might add features in different

orders; how can software cope?
• Some ideas...

9© Sun Microsystems, Inc., 2009 All rights reserved.

Simple Machine-Independent TM
Interface for BEHTM+RSM
void MITMI_resetMonitoring()
T MITMI_loadAndMonitor(T* addr)

// variants for all relevant types T
bool MITMI_readsStillValid()
int MITMI_beginTransaction()

// return value indicates txl execution (0), or failure reason (>0)
void MITMI_commitTransaction()

10© Sun Microsystems, Inc., 2009 All rights reserved.

Best effort approach
• All features “best effort”, so trivial implementations

without hardware support are possible
• Such implementations not directly useful, but allow

for different hardware features to be adopted and
used in different orders
• In this example:
> RSM can fail (almost) always; and/or
> BEHTM transactions can fail always

11© Sun Microsystems, Inc., 2009 All rights reserved.

No hardware support for TM (1/2)
int tls_anyReadsMonitored = FALSE;

void MITMI_resetMonitoring() {
 tls_anyReadsMonitored = FALSE;
}

T MITMI_loadAndMonitor(T* addr) {
 tls_anyReadsMonitored = TRUE;
 return *addr;
}

bool MITMI_readsStillValid() {
 return !tls_anyReadsMonitored;
}

Can only validate
empty read set

12© Sun Microsystems, Inc., 2009 All rights reserved.

No hardware support for TM (2/2)
int MITMI_beginTransaction() {
 return HTM_FEATURE_NOT_SUPPORTED;
}

int MITMI_commitTransaction() {
 assert(0);
}

All transactions fail

13© Sun Microsystems, Inc., 2009 All rights reserved.

Using Intel's HASTM support (1/2)
bool tls_anyReadsMonitored = FALSE;
int tls_counterSnapshot;

void MITMI_resetMonitoring() {
 tls_anyReadsMonitored = FALSE;
 HASTM_resetMarkCounter();
}

T MITMI_loadAndMonitor(T* addr) {
 if (!tls_anyReadsMonitored) {
 tls_anyReadsMonitored = TRUE;
 tls_counterSnapshot = HASTM_readMarkCounter();
 }
 return HASTM_loadSetMark(addr);
}

Take snapshot
at first read

14© Sun Microsystems, Inc., 2009 All rights reserved.

Using Intel's HASTM support (2/2)
bool MITMI_readsStillValid() {
 return !tls_anyReadsMonitored ||
 HASTM_readMarkCounter() == tls_counterSnapshot;
}

int MITMI_beginTransaction() {
 return HTM_FEATURE_NOT_SUPPORTED;
}

int MITMI_commitTransaction() {
 assert(0);
}

Use hardware support to
validate monitored reads

15© Sun Microsystems, Inc., 2009 All rights reserved.

Using Rock's BEHTM, but no RSM

// trivial RSM (non)implementation, as before

int MITMI_beginTransaction() {
 ROCK_chkpt failpath
 return 0;
failpath:
 return "failure reason"
}

int MITMI_commitTransaction() {
 ROCK_commit;
}

Start hardware transaction

Commit hardware transaction

16© Sun Microsystems, Inc., 2009 All rights reserved.

Genericising failure feedback
• Rock gives feedback about reasons for transaction

failure in special CPS register
• Reasons/feedback are implementation-specific;

need to translate to generic reasons: e.g.:

#define REASON_UNKNOWN 1
#define READ_CONTENTION 2
#define WRITE_CONTENTION 3
#define READ_RESOURCES 4
#define WRITE_RESOURCES 5
#define INSTRUCTION_LIMITATON 6
#define EVENT_LIMITATION 7

and/or
#define NO_ADVICE 1
#define RETRY 2
#define BACKOFF 3
#define GIVE_UP 4

17© Sun Microsystems, Inc., 2009 All rights reserved.

How might you use this?
• Imagine hardware-assisted STM that can use RSM

(if available) to optimise read validation and/or
BEHTM (if available) to commit transaction
• Both features best-effort, so need to be able to

operate with trivial (non)implementations of one or
both, but can take advantage of whatever is
available on given platform
• If RSM and BEHTM are both available, we get

cheap read validation and cheap commit
• Commit transaction must iterate over and validate

read set

18© Sun Microsystems, Inc., 2009 All rights reserved.

Integrating best-effort mechanisms
• So far, RSM and BEHTM treated as two seperate

best-effort mechanisms
• We can change the interface to require them to

interoperate (or add variants that do)
• If BEHTM transaction is required to commit only if

monitored reads still valid, significant optimsations
are possible:
> no need to iterate over read set at commit time
> no need to even maintain read set!

• Integration makes value of the whole greater than
sum of values of parts

19© Sun Microsystems, Inc., 2009 All rights reserved.

Using Integrated BEHTM + RSM
// HASTM-based RSM implementation, as before

int MITMI_beginRSMTransaction() {
 HYPO_ROCK_RSM_chkpt failpath
 return 0;
failpath:
 return "failure reason"
}

int MITMI_commitTransaction() {
 HYPO_ROCK_commit();
}

 Hypothetical variant makes
monitored reads part of transaction

20© Sun Microsystems, Inc., 2009 All rights reserved.

Using Rock's BEHTM, but no RSM
// trivial RSM (non)implementation, as before

int MITMI_beginRSMTransaction() {
 if (tls_anyReadsMonitored)
 return RSM_FEATURE_NOT_SUPPORTED;
 ROCK_chkpt failpath
 return 0;
failpath:
 return "failure reason"
}

int MITMI_commitTransaction() {
 ROCK_commit;
}

No hardware RSM support, so
if any reads monitored,

transaction must fail

21© Sun Microsystems, Inc., 2009 All rights reserved.

Query hardware capabiliities
• In previous example, using RSM interface makes

MITMI_beginRSMTransaction useless
• Code might infer that, and resort to traditional read

set validation and use BEHTM for commit
• Preferable for interface to support querying what

capabilities are supported, e.g.:

bool MITMI_RSM_support()
bool MITMI_BEHTM_support()

 More refined interface could give more information,
e.g., resource limitations

22© Sun Microsystems, Inc., 2009 All rights reserved.

What else?
• Could add support for static transactions to interface
• Examples include DCAS, n-CAS
• Would allow support by AMD ASF or Rock's

BEHTM
• Best-effort interface, or possibly make guarantees

for small simple transactions
• Support for unbounded TM systems, e.g. persistent

memory metadata (as in Zilles's UFO bits)

23© Sun Microsystems, Inc., 2009 All rights reserved.

Concluding Remarks
• Many interfaces at various levels involved in

implementing and using TM
• Some require standardisation, some may benefit,

others maybe should not be standardised
• Useful to discuss all anyway, especially in thinking

about hardware support
• Introduced key idea of combining and integrating

best-effort mechanisms for flexible hardware support
• But examples are simplistic, not thought out in detail,

may have wrong set of features
• Hope to provoke some discussion

24© Sun Microsystems, Inc., 2009 All rights reserved.

Learn more at
http://research.sun.com/scalable

Questions?

Mark Moir
mark.moir@sun.com

http://research.sun.com/scalable

