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Talk Overview

• Motivation:
– Most STM designs target shared memory systems
– Need for concurrency control on large-scale systems

• Emerging applications do not fit the MPI model

• Distributed memory is globally addressable (e.g. PGAS model) 

• GTM: Global Transactional Memory
– Targets large-scale distributed memory systems

• STM metadata overhead << Network Latency

– Asynchronous STM abstractions: Parallelism inside TXs
– Multi-core & Multi-node Environment
– On-going work on Chapel Language STM exploration
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Chapel Language
• Chapel is a parallel language developed by Cray Inc, 

part of the DARPA’s HPCS program
– Primary goal is to enhance programmer productivity

• Improve programmability, without sacrificing performance

• TM concepts satisfy Chapel’s productivity goals
– Atomic keyword included in language specification

• Identify transactional code segments 

– Semantics distinct from implementation mechanism
• Based on target platform: HTM, STM, or HyTM

– Chapel’s Multiresolution language philosophy 
• High-level counterpart to low-level Sync variables 

3
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Atomic keyword in Chapel

• Number of open questions under investigation:
– Strong vs Weak Isolation ?
– Memory Consistency Model ?
– I/O in atomic blocks ?

– Sync variables in atomic blocks ?

– Support STM semantics across multiple Locales ?
– Locale is an architectural unit of locality

– Threads within a locale have uniform access to local memory
– Memory within other locales accessible at a price
– E.g.:  A multicore processor node in a cluster system
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Distributed STM: Rationale

• Need for concurrency control across nodes
• STM can provide productivity benefits

– Programmability advantages over locks 
– Lock-based approaches don’t scale (serialization issues)

• No global hardware cache coherence

– STM metadata overhead << Network Latency
• In multicores: locks preferred over STM for performance reasons
• Comparable performance between locks and STM if communication 

requirements are the same

• Key: Tolerate remote communication latency
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Example: Bank Transaction

var balance: [1..num] int; 
atomic {
  balance[i] -= amount;
  balance[j] += amount;
}

Chapel Source Code 
TX_BEGIN;
t1 = TX_LOAD(&balance[i]);
t1 = t1 - amount;
TX_STORE(&balance[i], t1);
t2 = TX_LOAD(&balance[j]);
t2 = t2 + amount;
TX_STORE(&balance[j], t2);
TX_COMMIT; 

Multicore STM Library 

Atomic statement block 
is mapped to a sequence 

of STM library calls.

Compiler

TX_BEGIN:     Start Transaction
TX_LOAD:      Transactional Read
TX_STORE:    Transactional Write
TX_COMMIT:  Commit Transaction

i j

balance[1..num]
Shared Memory
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var balance: [1..num] int; 
atomic {
  balance[i] -= amount;
  balance[j] += amount;
}
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Example: Bank Transaction
Chapel Source Code 

TX_BEGIN;
t1 = TX_LOAD(node1, &balance[i]);
t1 = t1 - amount;
TX_STORE(node1, &balance[i], t1);
t2 = TX_LOAD(node2, &balance[j]);
t2 = t2 + amount;
TX_STORE(node2, &balance[j], t2);
TX_COMMIT; 

Distributed STM Library 

PGAS models allow direct 
access to remote memory. 
Global Memory Access = 
<Node-id, Local address> i j

node1 node2
Distributed Memory (PGAS)

TX_LOAD:   Remote Transactional Read
TX_STORE: Remote Transactional Write
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GTM: Global Transactional Memory

Motivation
Asynchronous STM

Abstractions
GTM Design

Scalability Results
Related Work

Future Directions
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Asynchronous STM Abstraction

• STMs enforce a blocking STM abstraction
– Return from STM call only after request fully satisfied
– Performance ramifications:

• Multicores: STM metadata management overheads
• Distributed memory: Remote communication overheads

• Asynchronous abstraction helps resolve issue
– Differentiate between when request is issued from when 

request is expected to complete
• Simultaneous STM requests in-flight

– Overlap remote latency with local computation and/or other 
independent communication

– Reduce single-node STM overheads (future work)
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Example: Bank Transaction

TX_BEGIN;
t1 = TX_LOAD(node1, &balance[i]);
t2 = TX_LOAD(node2, &balance[j]);
t1 = t1 - amt;
t2 = t2 + amt;
TX_STORE(node1, &balance[i], t1);
TX_STORE(node2, &balance[j], t2);
TX_COMMIT; 

TX_BEGIN;
TX_L_NB(t1, node1, &balance[i]);
TX_L_NB(t2, node2, &balance[j]);
TX_WAIT(t1);
t1 = t1 - amt;
TX_S_NB(node1, &balance[i], t1);
TX_WAIT(t2);
t2 = t2 + amt; ...

Synchronous (Blocking) 
STM Abstraction

Asynchronous (Non-blocking)
STM Abstraction

TX_L_NB and TX_S_NB:
Issue Transactional Read/Write 
request and return immediately.
TX_WAIT: 
Wait for request to complete

TX_LOAD and TX_STORE:
Issue Transactional Read/Write 
request and wait for results to 
arrive. Remote communication 
latency affects performance.
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GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions

11
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GTM Framework

12

Chapel Runtime

Network Conduit

GTM

GASNet, MPI

Chapel Compiler

GASNet Layer

Network Conduit
(e.g. Portals, MPI)

GTM

C Language

Standalone Framework Chapel-GTM Framework

Rest of this talk On-going Work
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GTM Execution Environment

• Fixed number of SPMD tasks created at startup
• SPMD tasks/nodes can be multithreaded

– Exploit hardware thread-level parallelism

• Partitioned Global Address Space (PGAS) model
– Transactional access of entire global address space

• Compatible with Chapel’s runtime environment
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GTM Interface Functionality

• Initialize and Clean-up STM runtime
• Start and Commit transactions
• Blocking and Non-blocking Variations

– Transactional load/store:
• Transfer data between global memory and private storage

– Transactional malloc/free: 
• Dynamically manage local/remote transactional storage

– Transactional Remote Procedure Call (RPC): 
• Execute user-level procedures on the target node
• For exploiting locality (stay tuned...)

• Manage pending non-blocking requests
14
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GTM Descriptors

• Transaction Descriptor or TDesc (tx): 
– Handle for identifying a transaction
– Tracks private metadata describing the transaction

• Handle Descriptor or HDesc (op):
– Handle for identifying a non-blocking request
– NULL for synchronous/blocking requests

• Node Descriptor or NDesc:
– Target node on whose context request must execute
– Each operation has target source and node

• If source and target are same, then operation is local else 
operation will generate remote communication

15
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Managing Transactional State 

• Transactions must be started and committed by same node

• All calls are local and blocking
– Commit/Abort may implicitly generate messages

16

GTM Procedure Description

tx = gtm_tx_create() Returns a new TDesc tx

gtm_tx_destroy(tx) Destroys the transaction tx

gtm_tx_begin(tx) Begin executing transaction tx

gtm_tx_commit(tx) Attempt to commit transaction tx

gtm_tx_abort(tx) Abort transaction tx

op = gtm_op_create() Returns a new handle descriptor op

gtm_op_destroy(op) Destory the handle op



Scalable STM for the Chapel High-Productivity Language

GTM Call Semantics

• HDesc and NDesc determine call semantics
– HDesc: Blocking or Non-Blocking

• Valid HDesc: No active request, Non-NULL

– NDesc: Local or Remote operation

17

Call Semantics HDesc (op) NDesc (tgt) 

Local Blocking NULL Source

Local Non-Blocking Valid HDesc Source

Remote Blocking NULL Remote

Remote Non-Blocking Valid HDesc Remote
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gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
   gtm_tx_begin(tx);
   gtm_tx_load(tx, NULL, node0, addr1, addr2, 4);
   ...
   gtm_tx_commit(tx);

Local Operation

Transactional Load Interface

18

Blocking Call
addr1

addr2

node0
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Transactional Load Interface

19

gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
   gtm_tx_begin(tx);
   gtm_tx_load(tx, NULL, node1, addr1, addr2, 4);
   ...
   gtm_tx_commit(tx);

Blocking Call
Remote Operation addr1

addr2

node0 node1
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Transactional Load Interface

20

gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
  HDesc *op1 = gtm_op_create();
  gtm_tx_begin();
  gtm_tx_load(tx, op1, node1, addr1, addr2, 4);

Non-Blocking Call
Remote Operation

addr1

addr2

node0 node1
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Managing Non-Blocking Requests

21

gtm_op_wait(tx,op)
Wait for request on op to complete. If op 
fails then abort tx.

On node0:
  gtm_tx_load(tx, op1, node1, addr1, addr2, 4);
  <computation or independent communication>
  gtm_op_wait(tx, op1);  

gtm_op_test(tx,op) Return status of request on op.

On node0:
  gtm_tx_load(tx, op1, node1, addr1, addr2, 4);
  ...
  gtm_op_test(tx, op1);
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Transactional Data Management

• Same call semantics as gtm_tx_load
– Must be called inside transactional boundaries 
– Use the same calls for managing non-blocking requests

22

gtm_tx_malloc(tx, op, tgt, size, addr)

Transactional allocation of size bytes starting at addr on tgt.

gtm_tx_store(tx, op, tgt, srcAddr, size, destAddr)

Transactional store of size bytes from destAddr on tgt to srcAddr on callee. 

gtm_tx_free(tx, op, tgt, size, addr)

Transactional free of size bytes starting at addr on tgt.



Scalable STM for the Chapel High-Productivity Language

Transactioal RPC Mechanism

23

tx_begin(tx1);
 tx_load(tx1, node1)
 tx_load(tx1, node2)
  ...
 tx_store(tx1,node2)
tx_commit(tx1)

node0node1 node2

tx_begin(tx1);
 <node1>
 ...
 tx_rpc(tx1,fn,node2) 
  ...
tx_commit(tx1);

node0
fn (tx1) {
 tx_load(tx1,node2)
 ...
 tx_store(tx1,node2)
}

node2node1
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Transactional RPC Interface

• gtm_op_test and gtm_op_wait for managing 
pending requests. 

• Can be called from outside transactional boundary
– Execute independent transactions on remote nodes

24

gtm_tx_fn(tx, op, tgt, fName, 
          iBuf, iSize, oBuf, oSize) 

Execute fName on tgt node.
Local or Remote variations.
Blocking or Non-Blocking variations.  
Input arguments: iBuf (size iSize)
Output results: oBuf (size oSize)
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STM Algorithmic Choices

25

Feature Description
Algorithmic 

Choice

Nesting semantics nesting transactional blocks Flat

Granularity size of transactional data Word

Conflict Detection when conflicts are detected Early

Write synchronization how writes are handled Deferred

Read synchronization how reads are handled
Read-

Versioning

Conflict tolerance semantics for read Validation

Forward Progress completion guarantees None
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GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions
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Experimental Methodology

• ORNL NCCS Jaguar Cray XT4
– 2.1 GHz Quad-core Opteron, 8GB memory

• Red-Black Tree Benchmark
– Each node maintains balanced RB Tree
– One thread per SPMD task 

• Insert, Delete, and Update operations across all nodes

• Additional results not presented
– Priority Queue and Bank Transaction Benchmark
– Effects of multithreading, Serialization issues in GASNet
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Execution Time: Red-Black Tree

Strong Scaling

Weak Scaling
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Speedup: Red-Black Tree
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GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results
Related Work
Future Directions
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Related Work: Cluster-STM

• Cluster-STM: Chapel’s past collaboration with UIUC
– PPoPP ‘08: Bocchino, Adve, and Chamberlain

• First to provide RPC with STM semantics
31

Feature GTM  Cluster-STM  

Parallelism Environment SPMD-Threads Strict SPMD

Asynchronous Abstraction Yes No

Transactional Memory Region Global Address 
Space

Limited to fixed 
segment

Transaction Identifier TDesc SPMD Id

STM Algorithms One Four
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GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions
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Future Directions

• Chapel Runtime
– Under progress: Chapel-GTM runtime exploration 
– Use asynchronous abstraction to reduce scalar STM 

metadata management overheads

• Chapel Compiler
– Implement Atomic keyword

• Compiler optimizations

• Develop benchmarks to benefit from Chapel-GTM
– Under progress: Bader MST, SAT solver, NAS UA
– Suggestions and possible collaborations...
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More information:
chapel.cs.washington.edu

Carpe TM!
Thank You.


