
Scalable STM for the Chapel High-Productivity Language

Srinivas Sridharan and Peter Kogge, U. Notre Dame

Brad Chamberlain, Cray Inc

Jeffrey Vetter, Future Technologies Group, ORNL

Scalable Software
Transactional Memory for
Chapel High-Productivity

Language

Scalable STM for the Chapel High-Productivity Language 2

Talk Overview

• Motivation:
– Most STM designs target shared memory systems
– Need for concurrency control on large-scale systems

• Emerging applications do not fit the MPI model

• Distributed memory is globally addressable (e.g. PGAS model)

• GTM: Global Transactional Memory
– Targets large-scale distributed memory systems

• STM metadata overhead << Network Latency

– Asynchronous STM abstractions: Parallelism inside TXs
– Multi-core & Multi-node Environment
– On-going work on Chapel Language STM exploration

Scalable STM for the Chapel High-Productivity Language

Chapel Language
• Chapel is a parallel language developed by Cray Inc,

part of the DARPA’s HPCS program
– Primary goal is to enhance programmer productivity

• Improve programmability, without sacrificing performance

• TM concepts satisfy Chapel’s productivity goals
– Atomic keyword included in language specification

• Identify transactional code segments

– Semantics distinct from implementation mechanism
• Based on target platform: HTM, STM, or HyTM

– Chapel’s Multiresolution language philosophy
• High-level counterpart to low-level Sync variables

3

Scalable STM for the Chapel High-Productivity Language 4

Atomic keyword in Chapel

• Number of open questions under investigation:
– Strong vs Weak Isolation ?
– Memory Consistency Model ?
– I/O in atomic blocks ?

– Sync variables in atomic blocks ?

– Support STM semantics across multiple Locales ?
– Locale is an architectural unit of locality

– Threads within a locale have uniform access to local memory
– Memory within other locales accessible at a price
– E.g.: A multicore processor node in a cluster system

Scalable STM for the Chapel High-Productivity Language 5

Distributed STM: Rationale

• Need for concurrency control across nodes
• STM can provide productivity benefits

– Programmability advantages over locks
– Lock-based approaches don’t scale (serialization issues)

• No global hardware cache coherence

– STM metadata overhead << Network Latency
• In multicores: locks preferred over STM for performance reasons
• Comparable performance between locks and STM if communication

requirements are the same

• Key: Tolerate remote communication latency

Scalable STM for the Chapel High-Productivity Language 6

Example: Bank Transaction

var balance: [1..num] int;
atomic {
 balance[i] -= amount;
 balance[j] += amount;
}

Chapel Source Code
TX_BEGIN;
t1 = TX_LOAD(&balance[i]);
t1 = t1 - amount;
TX_STORE(&balance[i], t1);
t2 = TX_LOAD(&balance[j]);
t2 = t2 + amount;
TX_STORE(&balance[j], t2);
TX_COMMIT;

Multicore STM Library

Atomic statement block
is mapped to a sequence

of STM library calls.

Compiler

TX_BEGIN: Start Transaction
TX_LOAD: Transactional Read
TX_STORE: Transactional Write
TX_COMMIT: Commit Transaction

i j

balance[1..num]
Shared Memory

Scalable STM for the Chapel High-Productivity Language

var balance: [1..num] int;
atomic {
 balance[i] -= amount;
 balance[j] += amount;
}

7

Example: Bank Transaction
Chapel Source Code

TX_BEGIN;
t1 = TX_LOAD(node1, &balance[i]);
t1 = t1 - amount;
TX_STORE(node1, &balance[i], t1);
t2 = TX_LOAD(node2, &balance[j]);
t2 = t2 + amount;
TX_STORE(node2, &balance[j], t2);
TX_COMMIT;

Distributed STM Library

PGAS models allow direct
access to remote memory.
Global Memory Access =
<Node-id, Local address> i j

node1 node2
Distributed Memory (PGAS)

TX_LOAD: Remote Transactional Read
TX_STORE: Remote Transactional Write

Scalable STM for the Chapel High-Productivity Language 8

GTM: Global Transactional Memory

Motivation
Asynchronous STM

Abstractions
GTM Design

Scalability Results
Related Work

Future Directions

Scalable STM for the Chapel High-Productivity Language 9

Asynchronous STM Abstraction

• STMs enforce a blocking STM abstraction
– Return from STM call only after request fully satisfied
– Performance ramifications:

• Multicores: STM metadata management overheads
• Distributed memory: Remote communication overheads

• Asynchronous abstraction helps resolve issue
– Differentiate between when request is issued from when

request is expected to complete
• Simultaneous STM requests in-flight

– Overlap remote latency with local computation and/or other
independent communication

– Reduce single-node STM overheads (future work)

Scalable STM for the Chapel High-Productivity Language 10

Example: Bank Transaction

TX_BEGIN;
t1 = TX_LOAD(node1, &balance[i]);
t2 = TX_LOAD(node2, &balance[j]);
t1 = t1 - amt;
t2 = t2 + amt;
TX_STORE(node1, &balance[i], t1);
TX_STORE(node2, &balance[j], t2);
TX_COMMIT;

TX_BEGIN;
TX_L_NB(t1, node1, &balance[i]);
TX_L_NB(t2, node2, &balance[j]);
TX_WAIT(t1);
t1 = t1 - amt;
TX_S_NB(node1, &balance[i], t1);
TX_WAIT(t2);
t2 = t2 + amt; ...

Synchronous (Blocking)
STM Abstraction

Asynchronous (Non-blocking)
STM Abstraction

TX_L_NB and TX_S_NB:
Issue Transactional Read/Write
request and return immediately.
TX_WAIT:
Wait for request to complete

TX_LOAD and TX_STORE:
Issue Transactional Read/Write
request and wait for results to
arrive. Remote communication
latency affects performance.

Scalable STM for the Chapel High-Productivity Language

GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions

11

Scalable STM for the Chapel High-Productivity Language

GTM Framework

12

Chapel Runtime

Network Conduit

GTM

GASNet, MPI

Chapel Compiler

GASNet Layer

Network Conduit
(e.g. Portals, MPI)

GTM

C Language

Standalone Framework Chapel-GTM Framework

Rest of this talk On-going Work

Scalable STM for the Chapel High-Productivity Language 13

GTM Execution Environment

• Fixed number of SPMD tasks created at startup
• SPMD tasks/nodes can be multithreaded

– Exploit hardware thread-level parallelism

• Partitioned Global Address Space (PGAS) model
– Transactional access of entire global address space

• Compatible with Chapel’s runtime environment

Scalable STM for the Chapel High-Productivity Language

GTM Interface Functionality

• Initialize and Clean-up STM runtime
• Start and Commit transactions
• Blocking and Non-blocking Variations

– Transactional load/store:
• Transfer data between global memory and private storage

– Transactional malloc/free:
• Dynamically manage local/remote transactional storage

– Transactional Remote Procedure Call (RPC):
• Execute user-level procedures on the target node
• For exploiting locality (stay tuned...)

• Manage pending non-blocking requests
14

Scalable STM for the Chapel High-Productivity Language

GTM Descriptors

• Transaction Descriptor or TDesc (tx):
– Handle for identifying a transaction
– Tracks private metadata describing the transaction

• Handle Descriptor or HDesc (op):
– Handle for identifying a non-blocking request
– NULL for synchronous/blocking requests

• Node Descriptor or NDesc:
– Target node on whose context request must execute
– Each operation has target source and node

• If source and target are same, then operation is local else
operation will generate remote communication

15

Scalable STM for the Chapel High-Productivity Language

Managing Transactional State

• Transactions must be started and committed by same node

• All calls are local and blocking
– Commit/Abort may implicitly generate messages

16

GTM Procedure Description

tx = gtm_tx_create() Returns a new TDesc tx

gtm_tx_destroy(tx) Destroys the transaction tx

gtm_tx_begin(tx) Begin executing transaction tx

gtm_tx_commit(tx) Attempt to commit transaction tx

gtm_tx_abort(tx) Abort transaction tx

op = gtm_op_create() Returns a new handle descriptor op

gtm_op_destroy(op) Destory the handle op

Scalable STM for the Chapel High-Productivity Language

GTM Call Semantics

• HDesc and NDesc determine call semantics
– HDesc: Blocking or Non-Blocking

• Valid HDesc: No active request, Non-NULL

– NDesc: Local or Remote operation

17

Call Semantics HDesc (op) NDesc (tgt)

Local Blocking NULL Source

Local Non-Blocking Valid HDesc Source

Remote Blocking NULL Remote

Remote Non-Blocking Valid HDesc Remote

Scalable STM for the Chapel High-Productivity Language

gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
 gtm_tx_begin(tx);
 gtm_tx_load(tx, NULL, node0, addr1, addr2, 4);
 ...
 gtm_tx_commit(tx);

Local Operation

Transactional Load Interface

18

Blocking Call
addr1

addr2

node0

Scalable STM for the Chapel High-Productivity Language

Transactional Load Interface

19

gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
 gtm_tx_begin(tx);
 gtm_tx_load(tx, NULL, node1, addr1, addr2, 4);
 ...
 gtm_tx_commit(tx);

Blocking Call
Remote Operation addr1

addr2

node0 node1

Scalable STM for the Chapel High-Productivity Language

Transactional Load Interface

20

gtm_tx_load(tx, op, tgt, destAddr, srcAddr, size)

On node0:
 HDesc *op1 = gtm_op_create();
 gtm_tx_begin();
 gtm_tx_load(tx, op1, node1, addr1, addr2, 4);

Non-Blocking Call
Remote Operation

addr1

addr2

node0 node1

Scalable STM for the Chapel High-Productivity Language

Managing Non-Blocking Requests

21

gtm_op_wait(tx,op)
Wait for request on op to complete. If op
fails then abort tx.

On node0:
 gtm_tx_load(tx, op1, node1, addr1, addr2, 4);
 <computation or independent communication>
 gtm_op_wait(tx, op1);

gtm_op_test(tx,op) Return status of request on op.

On node0:
 gtm_tx_load(tx, op1, node1, addr1, addr2, 4);
 ...
 gtm_op_test(tx, op1);

Scalable STM for the Chapel High-Productivity Language

Transactional Data Management

• Same call semantics as gtm_tx_load
– Must be called inside transactional boundaries
– Use the same calls for managing non-blocking requests

22

gtm_tx_malloc(tx, op, tgt, size, addr)

Transactional allocation of size bytes starting at addr on tgt.

gtm_tx_store(tx, op, tgt, srcAddr, size, destAddr)

Transactional store of size bytes from destAddr on tgt to srcAddr on callee.

gtm_tx_free(tx, op, tgt, size, addr)

Transactional free of size bytes starting at addr on tgt.

Scalable STM for the Chapel High-Productivity Language

Transactioal RPC Mechanism

23

tx_begin(tx1);
 tx_load(tx1, node1)
 tx_load(tx1, node2)
 ...
 tx_store(tx1,node2)
tx_commit(tx1)

node0node1 node2

tx_begin(tx1);
 <node1>
 ...
 tx_rpc(tx1,fn,node2)
 ...
tx_commit(tx1);

node0
fn (tx1) {
 tx_load(tx1,node2)
 ...
 tx_store(tx1,node2)
}

node2node1

Scalable STM for the Chapel High-Productivity Language

Transactional RPC Interface

• gtm_op_test and gtm_op_wait for managing
pending requests.

• Can be called from outside transactional boundary
– Execute independent transactions on remote nodes

24

gtm_tx_fn(tx, op, tgt, fName,
 iBuf, iSize, oBuf, oSize)

Execute fName on tgt node.
Local or Remote variations.
Blocking or Non-Blocking variations.
Input arguments: iBuf (size iSize)
Output results: oBuf (size oSize)

Scalable STM for the Chapel High-Productivity Language

STM Algorithmic Choices

25

Feature Description
Algorithmic

Choice

Nesting semantics nesting transactional blocks Flat

Granularity size of transactional data Word

Conflict Detection when conflicts are detected Early

Write synchronization how writes are handled Deferred

Read synchronization how reads are handled
Read-

Versioning

Conflict tolerance semantics for read Validation

Forward Progress completion guarantees None

Scalable STM for the Chapel High-Productivity Language 26

GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions

Scalable STM for the Chapel High-Productivity Language 27

Experimental Methodology

• ORNL NCCS Jaguar Cray XT4
– 2.1 GHz Quad-core Opteron, 8GB memory

• Red-Black Tree Benchmark
– Each node maintains balanced RB Tree
– One thread per SPMD task

• Insert, Delete, and Update operations across all nodes

• Additional results not presented
– Priority Queue and Bank Transaction Benchmark
– Effects of multithreading, Serialization issues in GASNet

Scalable STM for the Chapel High-Productivity Language

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Number of SPMD Nodes

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
s
c
a
le

) <GTM_B, S> <GTM_B, M> <GTM_B, L>

<GTM_NB, S> <GTM_NB, M> <GTM_NB, L>

28

Execution Time: Red-Black Tree

Strong Scaling

Weak Scaling

Total TX
Commits

S 224

M 228

L 230

Scalable STM for the Chapel High-Productivity Language

Speedup: Red-Black Tree

29

Total TX
Commits

S 224

M 228

L 230

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 4 8 16 32 64 128 256 512 1024

Number of SPMD Nodes

S
p
e
e
d
u
p
 (

la
rg

e
r

th
e
 b

e
tt

e
r)

Speedup-S Speedup-M Speedup-L

Scalable STM for the Chapel High-Productivity Language 30

GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results
Related Work
Future Directions

Scalable STM for the Chapel High-Productivity Language

Related Work: Cluster-STM

• Cluster-STM: Chapel’s past collaboration with UIUC
– PPoPP ‘08: Bocchino, Adve, and Chamberlain

• First to provide RPC with STM semantics
31

Feature GTM Cluster-STM

Parallelism Environment SPMD-Threads Strict SPMD

Asynchronous Abstraction Yes No

Transactional Memory Region Global Address
Space

Limited to fixed
segment

Transaction Identifier TDesc SPMD Id

STM Algorithms One Four

Scalable STM for the Chapel High-Productivity Language 32

GTM: Global Transactional Memory

Motivation
Asynchronous STM Abstractions

GTM Interface
Scalability Results

Related Work
Future Directions

Scalable STM for the Chapel High-Productivity Language 33

Future Directions

• Chapel Runtime
– Under progress: Chapel-GTM runtime exploration
– Use asynchronous abstraction to reduce scalar STM

metadata management overheads

• Chapel Compiler
– Implement Atomic keyword

• Compiler optimizations

• Develop benchmarks to benefit from Chapel-GTM
– Under progress: Bader MST, SAT solver, NAS UA
– Suggestions and possible collaborations...

Scalable STM for the Chapel High-Productivity Language 34

More information:
chapel.cs.washington.edu

Carpe TM!
Thank You.

