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Face Manifold Learning

50 x 50 pixel
faces

50 x 50 pixel
random images

Space of face images significantly smaller than 256%°°°

Want to recover the underlying (possibly nonlinear) space !
(Dimensionality Reduction)



Dimensionality Reduction

 Linear Techniques

— PCA, Classical MDS
— Assume data lies in a subspace
— Directions of maximum variance

 Nonlinear Techniques

— Manifold learning methods
e |LLE [Roweis & Saul *00]

e |ISOMAP [Tenanbaum et al. ’00]

« Laplacian Eigenmaps [Belkin & Niyogi *01]
— Assume local linearity of data
— Need densely sampled data as input
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Bottleneck: Computational Complexity =~ O(n3) !



Outline

Manifold Learning
— ISOMAP

Approximate Spectral Decomposition
— Nystrom and Column-Sampling approximations

Large-scale Manifold learning

— 18M face images from the web
— Largest study so far ~270 K points

People Hopper — A Social Application on Orkut
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ISOMAP [

Tanenbaum et al., *00]

 Find the low-dimensional representation that best
preserves geodesic distances between points




ISOMAP [

Tanenbaum et al., *00]

 Find the low-dimensional representation that best
preserves geodesic distances between points
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Y = argm;nz(Hyi—ysz—Aij)
/
Output co-ordinates Geodesic distance

Recovers true manifold asymptotically !



ISOMAP [

Tanenbaum et al., *00]
Given n input images:

* Find 7 nearest neighbors for each

image : O(n?) tl j/tt
* Find shortest path distance for ; h\ \
every (i, j), A;: O(n’ log n) t j_t .
« Construct n X n matrix G with

entries as centered Al-j2
— G'~18M x 18M dense matrix

- Optimal k reduced dims: U, 3,1
P

Eigenvectors  Eigenvalues O(n’)!




Spectral Decomposition

Need to do eigen-decomposition of symmetric positive
semi-definite matrix |G| O(n’)

nxn

For n=18M, G =1300 TB
— ~100,000 x 12GB RAM machines

Iterative methods

— Jacobi, Arnoldi, Hebbian [Golub & Loan, *83][Gorell, *06]
— Need matrix-vector products and several passes over data
— Not suitable for large dense matrices

Sampling-based methods

— Column-Sampling Approximation Relationship and
) ] [Frieze et al., *98] .
— Nystrom Approximation comparative performance?

[Williams & Seeger, *00]
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Approximate Spectral Decomposition

« Sample / columns randomly without replacement

—

A '

C

G

nxn

* Column-Sampling Approximation — SVD of C
[Frieze et al., 98]

* Nystrom Approximation — SVD of W
[Williams & Seeger, *00][Drineas & Mahony, ’05]
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Column-Sampling Approximation

T
C=UcEch
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Column-Sampling Approximation

T
C=UcEch

ﬁG = Uc = CVc EZI

Se= "3,
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Column-Sampling Approximation

C=UcEchT
[n X% 1]

ﬁG = Uc = CVc EZI

Se= "3,

O(nl?) !

>CTC = Vc 2(2: VcT
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Nystrom Approximation
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Nystrom Approximation
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Nystrom Approximation

T
. 'l dh
Ga1l G2,
C

G=G=cw'c!
W=Uy Sy Uy O@)!

S =" 3w

Not Orthonormal !

Ug=.-CU ~T
G =, CUw 2w UlUg = I
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Nystrom Vs Column-Sampling

G,s=CW'C’

N / /277!

G,,=C [CT C] c’
n

Experimental Comparison

— A random set of 7K face images
— Eigenvalues, eigenvectors, and low-rank approximations

[Kumar, Mohri & Talwalkar, ICML *09] Q ‘ ‘
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Eigenvalues Comparison
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Eigenvectors Comparison

Principal angle with exact
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Accuracy of Eigenvectors
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Low-Rank Approximations
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Nystrom gives better reconstruction than Col-Sampling !
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Low-Rank Approximations
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Low-Rank Approximations
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Orthogonalized Nystrom
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Nystrom-orthogonal gives worse reconstruction than Nystrom !
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Low-Rank Approximations
Matrix Projection

G, =U; 3, Ul
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Low-Rank Approximations
Matrix Projection

G, =U, 3, Ul =UUG=GU, U/

ék =l7kﬁI{G¢(7kSkl7]{
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Low-Rank Approximations
Matrix Projection
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Low-Rank Approximations
Matrix Projection
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Col-Sampling gives better Reconstruction than Nystrom !

— Theoretical guarantees in special cases
[Kumar et al., ICML ’09]
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How many columns are needed?

Columns needed to get 75% relative accuracy
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« Sampling Methods
— Theoretical analysis of uniform sampling method [Kumar et al., AISTATS *09]

— Adaptive sampling methods [peshpande et al. FOCS *06] [Kumar et al., ICML *09]

— Ensemble sampling methods [Kumar et al., NIPS *09] ‘ J
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So Far ...

» Large-scale Face Manifold learning
— 18 M face images from the web

 People Hopper — A Social Application on Orkut

N
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Large-Scale Face Manifold Learning

[ Talwalkar, Kumar & Rowley, CVPR ’08]

« Construct Web dataset

— Extracted 18M faces from 2.5B internet images
— ~15 hours on 500 machines
— Faces normalized to zero mean and unit variance

 Graph construction

— Exact search ~3 months (on 500 machines)

— Approx Nearest Neighbor — Spill Trees (5 NN, ~2 days) ’

— New methods for hashing based kNN search [Liu etal, 1041
[CVPR ’10] [ICML 10] [ICML ’11]

— Less than 5 hours!gﬁ
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Neighborhood Graph Construction

« Connect each node (face) with its neighbors

* Is the graph connected?

— Depth-First-Search to find largest connected component
— 10 minutes on a single machine

— Largest component depends on number of NN ( 7)

t | #Comp | % Largest
| 4.3M 0.03 %
2 285K 80.1 %
3 277K 82.2 %
5 275K 83.1%
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Samples from connected components

From Largest o —
Component X

From Smaller % h gy k) B‘ k)
Components
i [ 5 5
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Graph Manipulation

« Approximating Geodesics

— Shortest paths between pairs of face images
— Computing for all pairs infeasible (O(#2log n) !

 Key Idea: Need only a few columns of G for
sampling-based decomposition

— require shortest paths between a few (/) nodes and all
other nodes

— 1 hour on 500 machines (/ = 10K)

« Computing Embeddings (k = 100)
— Nystrom: 1.5 hours, 500 machine
— Col-Sampling: 6 hours, 500 machines
— Projections: 15 mins, 500 machines
N
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18M-Manifold in 2D

Nystrom Isomap
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Shortest Paths on Manifold

1

-

18M samples not
enough!




35

Summary

« Large-scale nonlinear dimensionality reduction
using manifold learning on 18M face images

« Fast approximate SVD based on sampling
methods

 Open Questions

— Does a manifold really exist or data may form clusters in
low dimensional subspaces?

— How much data is really enough?
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People Hopper GO Ug/‘ﬁ

people hopper labs

A fun social application on Orkut

Face manifold constructed with Orkut database

— Extracted 13M faces from about 146M profile images
— ~3 days on 50 machines
— Color face image (40x48 pixels) = 5760-dim vector

— Faces normalized to zero mean and unit variance in
intensity space

Shortest path search using bidirectional Dijkstra

Users can opt-out — Daily incremental graph update

J
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People Hopper Interface GOOngAbf

people hopper

Showing 11 friends...
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From the Blogs Goo ;

people hopper
Google Labs Presents: People Hopper
The mad scientists at Google unleashed their latest Google Labs experiment, People Hopper, to the 1
world this last Wednesday on January 27th, 2010. So what is People Hopper you ask? Basically tweet
it is an application for Google’s social networking site Orkut, which allows members to take their
profile picture and morph it into a friend’s profile picture. After you install the application you will be [ |
able to compare two of your friends (they must be Orkut members) using the People Hooper
application. Simply drag your friends’ photo into the application and within a couple of seconds, People Hooper
will display a clickable “path” that transitions your image to that of a friends’. Google Labs use image matching
technology to power their People Hopper application.
TOI’kUt home profile [ earch | inorlart  the we

People Hopper 1
Home = People Hopper
Options |Help

© HilmyC
invisible w

female
United States

We thought it may be interesting using People Hopper to compare Hillary Clinton with Monica Lewinsky ...

o

Marisa 4 days ago Mark as spam

Can you develop a "morph" that shows people what they might look like if they smoke
two packs of cigaretts a day for 30 years. Or what they would look like if they lost 100
pounds or gained a hundred pounds.

| think my son and daughter would have fun using this tool the way it is - between the two
of them. | could pick out the middle morphed picture between them - and they could see

what another sibling of theirs might have had the potential to look like. .
J
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CMU-PIE Dataset

68 people, 13 poses, 43 illuminations, 4 expressions
35,247 faces detected by a face detector

Classification and clustering on poses

N
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Clustering

 K-means clustering after transformation (£ = 100)
— K fixed to be the same as number of classes

* Two metrics

Purity - points within a cluster come from the same class
Accuracy - points from a class form a single cluster

Methods | Purity (%) Accuracy (%)
PCA | 54.6 (£1.3) | 46.8 (£1.3)
Nystrom Isomap 09 9 (x1.5) | 53.7 (£4.4)
Col-Sampling Isomap 5(x0.7) | 49.4 (£3.8)
Laplacian Eigenmap 39.3 (£4.9) | 74.7 (£5.1)

Matrix G is not guaranteed to be positive semi-definite in Isomap !
- Nystrom: EVD of W (can ignore negative eigenvalues)
- Col-sampling: SVD of C (signs are lost) ! ’ J

J
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dimension 2

Optimal 2D embeddings
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Laplacian Eigenmaps

[Belkin & Niyogi, *01]

Minimize weighted distances between neighbors

Find 7 nearest neighbors for each image : O(»?)

xi-x; 0% ifi~j

Compute weight matrix W: exp(—
W,-j =

0 otherwise

Compute normalized laplacian G = I - D 2wpl/2

where Dii = E] Wl]

Optimal k reduced dims: U,
'4

Bottom eigenvectors of G  O(n?)
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Different Sampling Procedures

Nystrom Reconstruction: PIE-7K
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