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Abstract

We introduce version 2.0 of the Data Structures Library in Java (JDSL). In addition to basic
data structures, such as lists and dictionaries, JDSL includes implementations of a variety of complex
data structures, such as trees, graphs, and priority queues, with powerful and flexible access to the
elements stored, both by means of traditional iterators and by means of new types of accessors called
positions and locators.
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1 Introduction

Computer programs organize information into data structures and process it according to algorithms.
Thus, providing component libraries of efficient data structures and algorithms can enable rapid software
development for advanced applications.

1.1 Benefits of Libraries

The benefits of using components for advanced algorithms and data structures are significant, resulting
in software that is much more reliable and faster to code than alternate choices. Indeed, reinventing
such components presents major risks to developers:

e Unreliability: complex algorithms and data structures are difficult to implement and even more
difficult to prove correct, since standard software testing methods are often inadequate for them.

o Insufficient knowledge: programmers are typically exposed to only the most elementary algorithms
and data structures as computer science students. Thus, little advanced and newly discovered
algorithmic knowledge reaches the general software development community.

e Long development time: advanced algorithms and data structures usually require more time to
implement than simple, slow-running solutions.

While the final version of a software application may use very specialized data structures, crafted
exactly to the purpose at hand, the availability of a component library substantially speeds up software
development.

1.2 Data Structure Libraries in C++

A major development in software engineering was the introduction of the Standard Template Library for
C++ (STL) [13], which is the first widely used library of data structures and is now part of the C++
standard.

While STL includes only elementary data structures, such as lists and dictionaries, more advanced
libraries are also available to C++ programmers. Among them: the Library of Efficient Data Structures
and Algorithms (LEDA) [11, 12], which includes more complex data structures, such as trees and graphs,
and a variety of sophisticated algorithms; the Generic Graph Component Library (GGCL) [16], which
applies the principles of generic programming from STL to a library of graph data structures and
algorithms.

Finally, other C++ libraries exist for specialized applications, such as the Computational Geometry
Algorithm Library (CGAL) [5] for geometric computing, and the Graph Drawing Toolkit [4] and the
library of Algorithms for Graph Drawing (AGD) [14] for graph drawing applications.

1.3 Data Structure Libraries in Java

Java is evolving into a premier development language for advanced software applications, particularly
for the Internet. A small library of data structures and algorithms, which we refer to as Java Collections
(JC) is included in the standard Java package java.util [17]. An alternative library is the Generic
Library for Java (JGL) by ObjectSpace [15], which is patterned after STL. Both the Java Collections and
JGL provide implementations of basic data structures such as maps, sets, dictionaries, and sequences.
JGL also provides a considerable number of template-based algorithms for permuting data. The Graph
Foundation Classes for Java (GFC) by alphaWorks [1] is a framework for programming with graphs



in Java. It provides a set of data structures to represent trees and graphs and some graph drawing
algorithms based on these data structures.

1.4 JDSL

We introduce version 2.0 of the Data Structures Library in Java (JDSL), which provides advanced data
structures and algorithms not found in the Java Collections and JGL. In addition to basic data structures
such as lists and dictionaries, JDSL includes implementations of a variety of complex data structures
such as trees, graphs, and priority queues, with powerful and flexible access to the elements stored.

Besides providing iterators, a simple mechanism for iteratively listing through a collection of objects,
JDSL introduces two new types of accessors to data, called positions and locators, which allow to “track”
elements within data structures. For example, the method for inserting an element into a dictionary
returns a locator for the element, which allows to later access the element in constant time without
having to search.

Another feature of JDSL is the support for decorations (or attributes), which can be used to “label”
positions within a data structure. For example, in a traversal of a graph, we can use decorations to mark
the vertices and edges visited so far.

JDSL views algorithms as objects that () are instantiated with the input data, and (i¢) provide access
to the output after their execution via various methods. Algorithms within JDSL can be parameterized
by means of the template method pattern [6).

JDSL supplements the Java Collections and is not meant to replace them. No conflicts arise when
using in the same program data structures from JDSL and from the Java Collections. To facilitate the
use of JDSL data structures in existing programs, adapter classes are provided to translate a collection

I [JC [ JGL [ GFC | JDSL ||

Sequences (lists, vectors) Vv v v
General-purpose trees Vv
Priority queues (heaps) Vv
Dictionaries (hash tables, red-black trees) | +/ vV
Sets

<

Graphs

Templated algorithms

Sorting algorithms vV

Data permutation algorithms
Graph traversals Vv

Shortest path, Minimum spanning tree
Graph drawing algorithms vV
Iterators vV v

Accessors (positions and locators)
Range views Vv v

Decorations (attributes) v

[ Thread-safety and full serializability [ / [ /| | |

<
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Table 1: A Comparison of the Java Collections, the Generic Library for Java, the Graph Foundation
Classes for Java, and the Data Structures Library in Java.



into a JDSL container and back, whenever when such a translation is applicable.

Table 1 compares key features of JC, JGL, GFC, and JDSL. In the current JDSL 2.0 release, our
main emphasis has been on data structures while only a basic repertory of algorithms has been provided.
Future releases will include a wider collection of algorithms. Additional future work includes supporting
full thread-safety and serializability within JDSL.

JDSL has been developed at the Center for Geometric Computing at Brown University and at
Algomagic Technologies, Inc., in collaboration with Michael Goodrich, who is a professor at The Johns
Hopkins University.

In the next section, we present the design goals for JDSL. Section 3 discusses the major concepts
used in JDSL, and Section 4 examines the specific data structures and algorithms packaged in release
2.0 of JDSL. In Section 5, we briefly overview the history of the JDSL project. The software engineering
practices applied during the project are discussed in Section 6. We finally consider future directions for
JDSL in Section 7.

2 Design Goals

In this section, we overview the design goals followed in the development of JDSL.

2.1 Flexibility

JDSL was designed to be easily adaptable to a number of purposes. A first use of the JDSL data
structures is to deploy them directly in a software application. Alternatively, one can create new data
structures using the JDSL data structures as building blocks.

2.2 Reliability

Reliability has been one of our primary goals during the construction of JDSL. We have put considerable
effort into designing exact specifications for every JDSL component, and we have created a suite of
detailed exceptions that will be thrown in the event of bad input data, to notify the user of the error
and shed light on the nature of the misuse. Finally, we have gone through an extensive and exhaustive
set of reviews and tests, which are discussed in more detail in Section 6.

2.3 Efficiency

The JDSL data structures typically offer the best-possible asymptotic time complexity for every operation
supported. While flexibility and reliability necessarily penalize (by a constant factor) the actual running
time and space requirement, various performance improvement techniques have been adopted, including
on-demand creation and caching of auxiliary structures.

2.4 Object-Orientation

JDSL takes a strong object-oriented view of data structures and algorithms. The JDSL data structures
are objects that handle themselves all the supported operations. Algorithms too are objects in JDSL.
Algorithm objects are instantiated with the input data. They store the results of their execution and
provide methods to access them.



3 Data Organization Concepts in JDSL

In this section, we examine some key data organization concepts used in JDSL.

3.1 Container

JDSL views a data structure as an organized collection of objects, called the elements of the data
structure. All data structures in JDSL implement the Container interface, which defines basic methods
such as reporting the number of elements, and returning an iterator to the elements.

3.2 Element

An element of a JDSL data structure is any java.lang.Object. Note that the same object can be
stored in many data structures and can be also stored multiple times in the same data structure. That
is, two elements of different containers, or of the same container, can be the same object.

3.3 Key

Some data structures in JDSL, called key-based containers, store keys associated with elements. Keys
are typically used as an indexing mechanism for their associated elements. An example of a key-based
data structure is a dictionary, whose main methods support the following operations:

e inserting a (key, element) pair;
e searching for an element with a given key;
e removing an element with a given key.

A key can be any java.lang.Object. Note that a key and its element need not be distinct from each
other. Typical keys are strings (e.g., names) and numbers (e.g., account numbers).

3.4 Accessor

JDSL provides unified and implementation-independent access to the elements of a data structure by
means of accessors [8]. An accessor abstracts the notion of membership of an element into a container
hiding the details of the implementation. An accessor provides constant-time access to an element stored
in a data structure, independently from the implementation of the data structure. Every element has
an accessor associated with it. Most operations in JDSL data structures refer to elements through their
accessors.

For example, in JDSL a sequence S may be implemented either by means of an array or by means of
a linked list. In the first case, to access an element we need its index in the array. In the second case,
we need a pointer to the list node storing the element. However, the user of JDSL need not know which
implementation of the sequence is being used since in either case, given an accessor acc to the sequence,
we can get the element by calling acc.element (). Also, we can delete the element from the sequence
by calling S.remove(acc).

There are two types of accessors in JDSL, positions and locators, and they are used for different types
of data structures. See Figure 1 for a diagram of the accessor interface hierarchy.
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(from api)

<<Interface>>
Decorable
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<<Interface>>
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<<Interface>>
Position
(from api)
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<<Interface>>

Vertex Edge
(from api) (from api)

Figure 1: The Accessor interface hierarchy.

3.4.1 Position

Positions denote virtual “places” in data structures such as sequences, trees, and graphs, that can be
modeled by a network. These data structures are called positional containers and establish topological
relations between their positions, such as the adjacency relation on the vertices of a graph, the parent-
child relation on the nodes of a tree, and the predecessor-successor relation on the nodes of a sequence.
Positions represent the “nodes” in such structures.

Positions are similar to the concept of items used in the LEDA C++ library [12].

3.4.2 Locator

The accessors for key-based containers are called locators. Since key-based containers do not define per
se a network of virtual places but operate on their elements through their associated keys, a locator is
conceptually different from a position.

A locator is a coat-check, of sorts, for a (key,element) pair inside a key-based container C. If you give
the container a pair to hold, the container gives you back a locator loc, and you can later refer to the
pair by means of the locator. For example, you can get the key with loc.key(), you can remove the
pair by calling C.remove(loc), and you can change the existing element with a new element newel by
calling C.replaceElement (loc,newel).

While providing “positionless” interface methods, key-based container must be ultimately imple-
mented with a concrete positional data structure where the (key, element) pairs may change positions
due to internal restructurings. For example, a typical implementation of a priority queue uses a binary
tree (heap) where the (key, element) pairs move around the tree to preserve the top-down ordering of
the keys (up-heap and down-heap).

Hence locators hide the complications of dynamically maintaining the implementation-dependent
binding between the (key, element) pairs and their positions in the underlying positional container
implementation.



3.5 Iterator

Iterators provide a simple mechanism for iteratively listing through a collection of objects. JDSL provides
various iterators over the elements and the accessors of a data structure. See Figure 2 for a diagram of
the iterator interface hierarchy.

<<Interface>>
Obijectlterator
(from api)

/\

<<Interface>>
Locatorlterator
(from api)

<<Interface>>
Positionlterator
(from api)

/A

<<Interface>>
VertexIterator
(from api)

<<Interface>>
Edgelterator
(from api)

Figure 2: The Iterator interface hierarchy.

All the JDSL data structures provide methods that return iterators spanning the entire data structure
(e.g., all the nodes of a tree or all the locators in a dictionary). In addition some methods provide access
to subsets of the data structure (e.g., the children of a node of a tree or the locators with a given key).
JDSL iterators can be traversed only forward. However, they can be reset to the beginning to repeat
the traversal.

Iterators in JDSL have specific snapshot semantics: they refer to the state of the data structure at
the time the iterator was created, even in the data structure has been modified while stepping through
the iterator. For example, if an iterator is created for all the nodes of a tree and then a subtree is cut
off, the iterator will still include the nodes of the removed subtree.

Note that the snapshot semantics refers only to the objects traversed by the iterator and not to
their state (e.g., other objects referred to by them). For example, let objiter be an iterator over the
elements stored in a sequence, and let positer be an iterator over the positions of the sequence. If after
the creation of these iterators we change an element at a certain position, then objiter will still contain
the old element but the position obtained from positer will refer to the new element — indeed, the
position is still the same although its element changed.

3.6 Comparator

When using a key-based container, it is particularly important to be able to specify the relation for
comparing the keys. In general, this relation depends on the type of the keys and on the specific
application for which the key-based container is used. Keys of the same type may be compared differently
in different applications.



To provide this capability, the EqualityComparator, Comparator, and HashComparator inter-
faces are defined in JDSL (see Figure 3). Interface EqualityComparator defines two methods:
isComparable(Object), for checking whether the object is a member of the ordered set over which
the comparator is defined, and isEqualTo(Object,0Object), for testing whether the two objects are
equal. Interface Comparator extends interface EqualityComparator with methods for testing whether
the first object is less than, less than or equal to, greater than, greater than or equal to the second object,
and with method compare(Object,0bject), a C-style comparison function. Interface HashComparator
extends interface EqualityComparator with method hashValue(Object), to be used in the hash table
implementation of the Dictionary interface.

The concept of comparator is present also in the java.util package of Java 2 SDK, version 1.2,
where a Comparator interface is defined. In order to maintain the backward compatibility of JDSL with
Java JDK, version 1.1, the JDSL Comparator does not extend the Java Comparator.

<<Interface>>
EqualityComparator

(from api)
|
<<Interface>> <<Interface>>
Comparator HashComparator
(from api) (from api)

Figure 3: The Comparator interface hierarchy.

3.7 Decoration

Another feature of JDSL is the ability to “decorate” the positions of a data structure with attributes
through the Decorable interface. This mechanism is useful for storing intermediate or final results of
the execution of an algorithm. For example, in a depth-first search traversal of a graph, we can use
decorations to mark the vertices being visited and to store the computed DFS number of each vertex.

3.8 Algorithm/Template Method Pattern

JDSL views algorithms as objects that are instantiated with the input data, and provide access to the
output after their execution via various methods. Algorithms in JDSL perform “generic” computations
that can be parameterized by means of the template method pattern [6]. In short, this means that they
can be specialized for specific tasks by subclassing them and overriding specific methods.

For example, JDSL contains an implementation of Dijkstra’s shortest path algorithm that refers to
the edge weights by means of a abstract method that can be specialized depending on how the weights
are actually stored or computed in the application at hand.



4 The Architecture of JDSL

In this section, we describe the interfaces defined in JDSL, their implementations, and the algorithms
that operate on them. Each data structure, with the notable exceptions of the priority queue and the
graph, is described by two interfaces:

e The first interface contains all the methods to query the data structure. Its name has the prefix
Inspectable.

e The second interface, which extends the first one, contains all the methods to modify the data
structure.

As described in Section 3, we can partition the set of data structures that are implemented in JDSL
into two subsets: the positional containers and the key-based containers. Accordingly, the interfaces
for the various containers are organized into two hierarchies (see Figures 4 and 5), with a common root
given by interfaces InspectableContainer and Container. At the same time, interfaces, classes, and
algorithms are grouped into various Java packages.

In the rest of this section, we denote with N the current number of elements stored in the data
structure being considered.

4.1 Packages

The architecture of JDSL currently consists of eight Java packages. Each package consists of a set of
interfaces and/or classes. Interfaces and exceptions for the data structures are defined in packages with
the api suffix, while the reference implementations of these interfaces are defined in packages with the
ref suffix. Interfaces, classes, and exceptions for the algorithms are instead grouped on a functional
basis. As we will see later, the interfaces are arranged in hierarchies that may extend across different
packages. The current packages are the following:

e jdsl.core.api. Package of interfaces and exceptions that compose the API for the core data
structures of JDSL: sequences, trees, priority queues, dictionaries, and iterators on their elements,
positions and locators.

e jdsl.core.ref. Package of implementations of the interfaces in jdsl.core.api. Most imple-
mentations have names of the form <ImplementationStyle><InterfaceName>. For instance, an
ArraySequence implements the jdsl.core.api.Sequence interface with a growable array. Classes
with names of the form Abstract<InterfaceName> implement some methods of the interface for
the convenience of developers building alternative implementations.

e jdsl.core.algo.sorts. Package of sorting algorithms that operate on Sequence objects defined
in jdsl.core.api. They all implement the SortObject interface, also defined in this package.

e jdsl.core.algo.traversals. Package of traversal algorithms that operate
on jdsl.core.api.InspectableTree objects. A traversal algorithm performs operations while
visiting the nodes of the tree.

e jdsl.core.util. This package currently contains a Converter class to convert JDSL data struc-
tures to Java Collections and vice versa.

e jdsl.graph.api. Package of interfaces and exceptions that compose the API for the graph data
structure of JDSL.



e jdsl.graph.ref. The package contains class IncidenceListGraph, an implementation of inter-
face jdsl.graph.api.Graph, plus implementations of iterators over the vertices and edges of the
graph.

e jdsl.graph.algo. Package of basic graph algorithms, including algorithms for depth-first search,
topological sort, single-source shortest path, and minimum spanning tree.

4.2 Positional Containers and their Algorithms

Positional containers store elements, which can be accessed through the container’s positions. All posi-
tional containers implement interfaces InspectablePositionalContainer and PositionalContainer,
which extend InspectableContainer and Container, respectively (see Figure 4). Every positional con-
tainer implements a set of essential operations, including being able to determine its own size (size()),
to determine whether it contains a specific position (contains(Accessor)), to replace the element asso-
ciated with a position (replaceElement (Accessor,Object)), to swap the elements associated with two
positions (swapElements(Position,Position)) and to get iterators over the elements (elements()) or
the positions (positions()) of the container.

4.2.1 Sequence

A sequence is a basic data structure used for storing elements in a linear, ranked fashion. Sequences can
be implemented in many ways, e.g., as a linked list of nodes or on top of an array.

Sequence interfaces. In JDSL, sequences are described by interfaces InspectableSequence and
Sequence, which extend InspectablePositionalContainer and PositionalContainer,respectively.
In addition to the basic methods provided by all positional containers, the sequence interfaces sup-
port access and modification to positions at the sequence ends (with methods such as first(),
insertlast (), and removeFirst()) and to specific positions along the sequence (with methods such as
after(Position), atRank(int), insertBefore(Position), and removeAtRank(int)).

NodeSequence. NodeSequence is an implementation of Sequence built on top of a doubly-linked list
of nodes. The nodes are actually the positions of the sequence. NodeSequence takes O(1) time to insert,
remove, or access both ends of the sequence or a position before or after a given one. It takes O(N)
time to insert, remove, or access positions in terms of their rank in the sequence, since it must traverse
along the sequence to find a position’s rank. Some appropriate uses of a NodeSequence include using it
as a stack, a queue, or a deque.

ArraySequence. ArraySequence is an implementation of Sequence built on top of a growable array
of positions. It can be created with an initial capacity, and can be told whether or not to reduce
this capacity when its size drops below a certain value, depending on whether the user prefers space
or speed efficiency. ArraySequence takes O(1) time to access any position in the sequence, and O(1)
time (amortized) )to insert or remove at the end of the sequence over a series of calls. It takes O(N)
time to insert or remove at the beginning or middle of the sequence, since elements have to be shifted
to make room for the new position or to close up the space left by the removed position. Hence, an
ArraySequence is useful for quick access after filling the sequence, for filling the sequence only at the
end, or for using it as a stack.
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Figure 4: The PositionalContainer interface hierarchy.
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Sorting algorithms. JDSL provides a suite of sorting algorithms for different applications. They all
implement the SortObject interface, whose only method is sort(Sequence,Comparator). Sorts with
the prefix List are most efficient when used with NodeSequence’s and sorts with the prefix Array are
most efficient when used with ArraySequence’s.

e ListQuickSort/ArrayQuickSort. Quicksort is an extremely fast sort, running in O(N log N)
expected time. However, its performance degrades greatly if the sequence is already very close to
being sorted. Also, it is not stable — that is, it does not guarantee that elements with the same
value will remain in the same order they were in before sorting. In all cases whether neither of
these caveats apply, it is the best choice.

e ListMergeSort/ArrayMergeSort. Mergesort is not as fast as quicksort, though it still runs in
O(Nlog N) time. There are no cases where its performance will degrade due to peculiarities in
the input data, and it is a stable sort.

e HeapSort. Heapsort is another sort, which is based upon a ArrayHeap (see below). Its perfor-
mance, like that of mergesort, will not degrade due to peculiarities in the input data, but it is not
a stable sort.

4.2.2 Tree

Trees allow more sophisticated relationships between elements than is possible with a sequence. Trees
allow relationships between a child and its parent, or between siblings of one parent. Trees have one
root, which has no parent, and external leaves, which have no children.

Tree interfaces. InspectableTree and Tree are the interfaces describing an n-ary tree; they extend
InspectablePositionalContainer and Container, respectively. InspectableBinaryTree, which ex-
tends InspectableTree, and BinaryTree, which extends Container, are the interfaces describing a
binary tree. The nodes of the tree are the positions of these containers. In addition to the basic meth-
ods provided by all positional containers, the tree interfaces define methods to determine where in the
tree a position lies (with methods such as isRoot(Position) and isExternal (Position)), to return
the parent (parent(Position)), siblings (siblings(Position)), or children (with methods such as
children(Position), leftChild(Position), and childAtRank(Position,int)) of a position, to cut
(cut(Position)) or link (1ink(Position,Tree)) a subtree, etc.

NodeTree. NodeTree is an implementation of Tree. It always contains at least one node. It is the
class to use when a generic tree is needed, or for building more specialized (non-binary) types of trees.

NodeBinaryTree. NodeBinaryTree is an implementation of BinaryTree. Similarly to NodeTree, it
always contains at least one node; in addition, each node can have either 0 or 2 children. If a more
complex tree is not necessary, using a NodeBinaryTree will be faster and easier than using a NodeTree.

Iterator-based traversals. In JDSL, there are two different types of traversals for trees. The first
type is based on iterators. For an iterator, the tree to iterate over must be passed in at instantiation.
After instantiation, the tree can be iterated over using methods nextPosition() and reset (). Iterators
have snapshots semantics — see Section 3.5. Iterators give a quick traversal of the tree in a specific
order, and are the proper traversal to use when this is all that is required.

e Pre0rderIterator. A preorder iterator gives its traversal in pre-order, that is, it returns a parent
before returning any of its children. Preorder iterators work both for general and binary trees.
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e PostOrderIterator. A postorder iterator gives its traversal in post-order, which means that it
returns a parent after returning all of its children. Postorder iterators work both for general and
binary trees.

e InOrderIterator. An inorder iterator gives its traversal in in-order, which means that it returns
a parent in between its left and right children. Inorder iterators only work for binary trees.

Algorithmic traversals. The second type of tree traversal in JDSL uses an algorithm object, which
can be extended through the template method pattern.

e EulerTour. The only traversal algorithm object is the Euler tour, which visits each node several
times. Namely, a first time before traversing any of the subtrees of the node, between the traversals
of any two consecutive subtrees, and a last time after traversing all the subtrees. Each time a node
is visited, one of the methods visitFirstTime (Position), visitBetweenChildren(Position),
visitLastTime (Position), and visitExternal (Position) of this algorithm object is automati-
cally invoked. A particular computation on the visited tree may be performed by suitably overriding
these methods in a subclass of EulerTour.

A Euler tour should be used rather than an iterator if the traversal is to be used in a more
sophisticated manner than iterators allow. Note that, unlike the iterators, the Euler tour does not
have snapshot semantics. This means that any modification of the tree during execution of the
Euler tour will cause undefined behavior.

4.2.3 Graph

A graph is a fundamental data structure used in a variety of application areas describing a binary
relationship on a set of elements. Each vertex of the graph may be linked to other vertices through
edges. Edges can be either one-way, directed edges, or two-way, undirected edges. In JDSL, both
vertices and edges are positions of the graph. JDSL handles all graph special cases such as self-loops,
multiple edges between two vertices, and disconnected graphs.

Graph interfaces. The main graph interfaces are InspectableGraph, which extends
InspectablePositionalContainer, ModifiableGraph, which extends PositionalContainer, and
Graph, which extends both InspectableGraph and ModifiableGraph. The methods in these inter-
faces allow to:

e determine whether vertices are adjacent (areAdjacent (Vertex,Vertex)) or vertices and edges
are incident (areIncident(Vertex,Edge));

e determine the degree of a vertex (degree(Vertex));
e determine the origin (origin(Edge)) or destination (destination(Edge)) of an edge.
e add (insertVertex(Object)) or remove (removeVertex(Vertex)) vertices;

e set the direction of an edge (setDirectionFrom(Edge,Vertex) and
setDirectionTo(Edge,Vertex));

e add (insertEdge(Vertex,Vertex,Object)), delete (removeEdge (Edge) ), split
(splitEdge (Edge,Object)), or unsplit (unsplitEdge (Vertex,Object)) edges.

12



IncidenceListGraph. IncidenceListGraph is an implementation of Graph. It is based on an inci-
dence list representation of a graph.

Traversals. The depth-first search (DFS) traversal of a graph is available in JDSL. Depth-first search
proceeds along one path, continuing until no new vertices can be found before backtracking. The JDSL
implementation of depth-first search is a template method that allows the user to specify actions to
occur when a vertex is first visited or is “finished” by being exited for the last time, and when different
sorts of edges are reached (such as tree edges in the search tree DFS generates, or cross edges between
different branches of the search tree). The basic implementation of depth-first search is designed to work
on undirected graphs.

Two subclasses of DFS are provided: DirectedDFS (for directed graphs) and DirectedFindCycleDFS,
which finds cycles. They are good examples of how to use DFS as a template method to implement a
more specific algorithm.

Topological numbering. A topological numbering is a numbering of the vertices of an acyclic directed
graph such that, if there is an edge from vertex u to vertex v, then the number associated with v is
higher than the number associated with wu.

Two algorithms that compute a topological numbering are included in JDSL — TopologicalSort
associates with each vertex a unique number, whereas UnitWeightedTopologicalNumbering associates
with each vertex a number based on how far it is from the source of the graph, and vertices may have
equal numbers if they are at the same distance from the source. Both topological numbering algorithms
extend the abstract class AbstractTopologicalSort.

Dijkstra’s algorithm. Dijkstra’s algorithm computes the shortest path to every vertex of a connected
graph (with weights assigned to the edges by a function), from a specific source vertex. The JDSL
implementation of Dijkstra’s algorithm — IntegerDijkstraTemplate — uses the template method
pattern; it can be easily extended to change its functionality. Extending it makes it possible, for instance,
to stop after computing the shortest path to a specific vertex, to alter the function for calculating the
weight of an edge, and to change the way the results are stored.

Prim’s algorithm. Prim’s algorithm computes a minimum spanning tree of a graph (the shortest set
of paths connecting every vertex to every other vertex). The JDSL implementation of Prim’s algorithm
— IntegerPrimTemplate — uses the template method pattern; it can be easily extended to change its
functionality. Extending it makes it possible, for instance, to stop after computing the tree for a limited
set of vertices, to set the function for calculating the weight of an edge, and to change the way the results
are stored.

4.3 KeyBased Containers and their Algorithms

Key-based containers store key-element pairs, which can be accessed through the container’s locators. All
key-based containers implement interfaces InspectableKeyBasedContainer and KeyBasedContainer,
which extend InspectableContainer and Container, respectively (see Figure 5). Every key-based
container implements a set of essential operations, including being able to determine its own size
(size()), to determine whether it contains a specific locator (contains(Accessor)), to replace the
key (replaceKey(Locator,Object)) or the element (replaceElement (Accessor,Object)) associated
with a locator, to insert (insert(Object,Object)) or remove (remove(Locator)) a key-element pair,
and to get iterators of the locators (locators()), keys (keys()), or elements (elements()) in the
container.
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<<Interface>>
InspectableContainer

(from api)
<<Interface>> . <<Interface>>
InspectableKeyBasedContainer Container
(from api) (from api)
<<Interface>> <<Interface>>
InspectableDictionary KeyBasedContainer
(from api) (from api)
<<Interface>> <<Interface>> <<Interface>>
InspectableOrderedDictionary Dictionary PriorityQueue
(from api) (from api) (from api)

<<Interface>>
OrderedDictionary
(from api)

Figure 5: The KeyBasedContainer interface hierarchy.

4.3.1 PriorityQueue

A priority queue is a data structure for storing a collection of elements prioritized by keys, where the
smallest key value indicates the highest priority. It supports arbitrary insertions and deletions of elements
and keeps track of the highest-priority key. A priority queue is useful, for instance, in applications where
the user wishes to store a queue of tasks of varying priority, and always process the most important task
next.

PriorityQueue interface. The PriorityQueue interface extends the KeyBasedContainer interface.
In addition to the basic methods common to all the key-based containers, it provides methods to access
(min()) or remove (removeMin()) the key-element pair with highest priority, i.e., with minimum key.
Note that an element’s priority can be changed by method replaceKey(Locator,Object), inherited
from KeyBasedContainer.
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ArrayHeap. ArrayHeap is an efficient implementation of PriorityQueue built upon a heap. Inserting,
removing, or changing the key of a key-element pair takes logarithmic time, and examining the key-
element pair with the minimum key can be done in constant time. The implementation is parameterized
with respect to the comparison rule used to order the keys; to this purpose, a Comparator object is
passed as an argument to the ArrayHeap constructors.

4.3.2 Dictionary

A dictionary is a data structure used to store key-element pairs and then quickly search for them using
their keys. An ordered dictionary is a particular dictionary where a total order on the set of keys is
defined. All JDSL dictionaries are multi-maps, which means that they can store multiple key-element
pairs with the same key.

Dictionary interfaces. The primary dictionary interfaces are InspectableDictionary and
Dictionary, which extend InspectableKeyBasedContainer and KeyBasedContainer, respectively. In
addition to the basic methods common to all the key-based containers, these dictionary interfaces pro-
vide methods to find key-element pairs by their keys (find(Object) and findAl1(Object)) and to
remove all key-element pairs with a specific key (removeAll(Object)). Other dictionary interfaces are
InspectableOrderedDictionary and OrderedDictionary, which extend InspectableDictionary and
Dictionary, respectively. They provide additional methods to access the first (first()) or last (last ())
key-element pair in the ordered dictionary, and to access the key-element pair before (before (Locator))
or after (after(Locator)) a given key-element pair.

HashtableDictionary. HashtableDictionary is an implementation of Dictionary. It is, as its name
implies, a dictionary built on top of a hash table. Insertion and removal of key-element pairs will
usually take O(1) time, although individual insertions and removals may require O(N) time. The
implementation is parameterized with respect to the hashing function used to store the key-element
pairs; to this purpose, a HashComparator object is passed as an argument to the HashtableDictionary
constructors. HashtableDictionary is a good choice when overall speed is necessary.

RedBlackTree. RedBlackTree is an implementation of OrderedDictionary. It is a particular type
of binary search tree, where insertion, removal, and access to key-element pairs require each O(log N)
time. The implementation is parameterized with respect to the comparison rule used to order the keys;
to this purpose, a Comparator object is passed as an argument to the RedBlackTree constructors.

5 Project History

The initial development of JDSL began in September 1996. A major part of the project in the first years
was the experimentation with different models for data structures and algorithms, and the construction
of prototypes.

In 1997 and 1998, early prototypes of JDSL were used in the introductory data structures and
algorithms course at Brown University. After a successful class experimentation, JDSL 1.0, a first
version of JDSL aimed at instructional applications, was released in 1998. JDSL 1.0 also included
auxiliary packages for visualizing data structures and for testing their implementation [2].

In the Spring of 1999, a new experimental version of JDSL (more advanced than 1.0) was used in
programming assignments and course projects in a graduate-level computational geometry course at
Brown University.
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A significant implementation, documentation, and testing effort was done in the Summer of 1999,
leading to the current version of JDSL, JDSL 2.0, which was released in August 2000 after a complete
redesign of the JDSL Web site. JDSL 2.0 is suitable for use by researchers, professionals, educators, and
students. It is licensed free of charge for educational and research purposes.

The two releases of JDSL were accompanied by the publication of the book Data Structures and
Algorithms in JAVA by Goodrich and Tamassia [9, 10].

6 Software Engineering in JDSL

In any project of the size and scope of JDSL (over 30,000 lines of code and internal documentation in
the current version), careful attention must be paid to good software engineering practice and quality
control. In coming up with our process for designing, implementing, and verifying our data structures,
we looked with interest at the procedures followed in the construction of previous software libraries, as
well as those commonly in use in the industry.

6.1 Design process

In the creation of the most recent version of JDSL, we followed an engineering plan consisting of several
distinct steps.

Interface/Specifications design. The first step was to design the interfaces and specifications that
we would use to construct our data structures and algorithms. This took place in several design
meetings. Discussion in general continued on an email discussion list, and often decisions would be
considered multiple times before being finalized. Occasionally, a prototype implementation would
be constructed in order to see firsthand the advantages and disadvantages of a particular interface
choice. Interface and specification decisions and clarifications continued apace during the project,
and deciding when to “freeze” an interface from further changes was an ongoing challenge.

Implementation. After a satisfactory interface was designed for the particular data structure or al-
gorithm, it would be implemented by a member of the research team. Occasionally, a flaw in the
specification discovered through implementation would necessitate a return to the previous stage
in development.

Documentation. Immediately after the implementation of a data structure or algorithm, the imple-
mentor’s next task would be to fully document the class(es) they had just constructed. We chose
the Javadoc standard for our commenting [18]. In addition, we required that every method’s time
complexity be commented.

Testing. Testing of our data structures and algorithms took place in two stages. First, during im-
plementation, the programmer would conduct a “white-box” test to see if every method func-
tioned correctly, with special attention to implementation-specific details. For example, for our
RedBlackTree, this test included verifying that an extensive set of insertions and deletions did not
compromise the black-height or double-red properties.

The second stage was a “black-box” test, conducted by an individual other than the implementor.
This test examined every interface method of the data structure to verify that it functioned exactly
as written in the specifications, both in exceptional and nominal cases. This test was crucial, as it
was especially effective at catching inconsistencies created by late changes in specifications.
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Reviews. We chose to emulate the common industry model of having two different sorts of reviews of
code: peer reviews, and project leader reviews. During reviews, the reviewer would examine the
code for correctness (though problems in this area were quite rare by this point), efficiency, and
readability.

Peer reviews were performed by another member of the development team. Some peer reviews
took place face-to-face, while in some other cases the reviewer examined the class on his or her
own and sent comments and questions by email. Recommendations given during peer reviews were
not mandatory, but were usually followed.

Project leader reviews were conducted by one of the project leaders, and were always face-to-
face. Since this was the final review stage, reviews were extremely methodical. Any changes
recommended by the project leaders were mandatory, and occasionally a second project leader
review would take place if the necessary changes were sufficiently comprehensive.

6.2 Software tools

We used an extensive set of software tools to assist us in constructing JDSL. However, a few merit special
mention.

For testing data structures, we used a testing package that we developed in-house [2]. This package
gave us the capability to quickly generate data structures to compare to one another, and allowed us to
test methods for correct return, for leaving the structure in the correct state, and for correctly throwing
exceptions on erroneous input.

With over 20 developers, some of whom working remotely, we found that a system to maintain a
common code repository and to manage code revisions was essential. We adopted CVS, the Concurrent
Versioning System [3], which performed quite well.

7 Future Work

Several extensions are planned for future versions of JDSL, including:
e additional graph algorithms, such as breadth-first search, maximum flow, and matching;

e data structures and algorithms for geometric computing (the GeomLib project [19]), such as planar
subdivisions, Voronoi diagrams, and convex hulls;

e data structures and algorithms for graph drawing, including straight-line, hierarchical, and orthog-
onal layouts [7];

e an instructional tool for the visualization of basic data structures (the JDSLViz project [2]);

e a package that facilitates testing whether the implementation of a data structure complies with
the interface specification [2].
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