
Accessing the Internal Organization of Data

Structures in the JDSL Library?

Michael T. Goodrich1, Mark Handy2, Benôıt Hudson2, and Roberto Tamassia2

1 Department of Computer Science
Johns Hopkins University

Baltimore, Maryland 21218
goodrich@cs.jhu.edu

2 Department of Computer Science
Brown University

Providence, Rhode Island 02912
{mdh, bh, rt}@cs.brown.edu

Abstract. Many applications require data structures that allow effi-
cient access to their internal organization and to their elements. This
feature has been implemented in some libraries with iterators or items.
We present an alternative implementation, used in the Library of Data
Structures for Java (JDSL). We refine the notion of an item and split it
into two related concepts: position and locator. Positions are an abstrac-
tion of a pointer to a node or an index into an array; they provide direct
access to the in-memory structure of the container. Locators add a level
of indirection and allow the user to find a specific element even if the
position holding the element changes.

1 Introduction

In using a data structure, the user must be granted some form of access to its
elements, preferably an efficient form. In some cases, the access can be very
limited: in a stack, for example, we can look only at the top element. But in
many cases, we need a more general mechanism to allow the user some handle
on the elements. In an array structure, we can use indices. In a linked structure,
we can use pointers to the nodes.

From the perspective of object-oriented design, however, we need to restrict
access to the internals of the data structures. Otherwise, the user can make a
container invalid by modifying data required to maintain the consistency of the
data structure. For instance, if a list gives the user pointers to its nodes, the user
should not be able to modify explicitly the successor and predecessor pointers
of the node.
? Work supported in part by the U.S. Army Research Office under grant DAAH04–

96–1–0013 and by the National Science Foundation under grants CCR–9625289,
CCR–9732327, and CDA-9703080.

1.1 Previous Work

Two well-known abstractions for safely granting access to the internals of data
structures are iterators and items. STL [13], JGL [20] and the Java Collections
Framework of Java 1.2 [18] use iterators. LEDA [11,21] uses items.

Iterators provide a means to walk over a collection of elements in some linear
order. At any time, an iterator is essentially a pointer to one of the elements;
this pointer can be modified by using the incrementing functions the iterator
provides. In C/C++, a pointer (other than to void) fits this profile: it points
to a position (an address in memory), and the increment operation ‘++’ makes
the pointer point to the next element in an array. In a linked list, a simple class
with a pointer to a node of the list will do. The access function will return the
element of the node, and the increment function will move to the next node in
the list. This discussion is of an STL input iterator. Other iterators in the STL
hierarchy can also move backwards, write to the current element, and so on.
The capabilities of iterators do fulfill the requirement to hide the data structure
organization from the user, while still allowing the user to refer to an element
efficiently. They also make it easy to act on every element of a list.

Iterators, however, have their limitations. For example, if a program gets an
iterator over a container and subsequently modifies the container, the question
arises as to how the iterator will behave. The modification may be reflected by the
iterator, or it may not, or the iterator may simply be invalidated. Furthermore,
iterators work well on linearly arranged data, but it is not clear how to extend
them to non-linear data structures, such as trees and graphs.

Items, as they are referred to in LEDA, are the nodes of a data structure.
In order to keep the user from having access to the internal structure, all fields
of an item are private; all access is done through the container, passing in the
item. This works quite well to describe arbitrary linked structures, including
linear data structures. This approach does not preclude the use of iterators:
one can easily be written by having it store a current item, which it changes
on incrementing. For array-based structures, LEDA does not provide items. For
uniformity’s sake, it would be possible to provide them, either by storing a
pointer to an item-object in each slot of the array or by creating an item class
that simply hides an array index.

1.2 Overview

We have refined the notion of an item and split it into two abstractions: position
and locator. Positions abstract the notion of a place in memory, and provide
direct but safe access to the internals of a data structure. Locators are a handle
to an element; while the position of the locator within a container may change,
the element will not.

In the following sections, we discuss these concepts at greater length, and
introduce two container types which use positions and locators in their interfaces.
We then present our implementation of these abstractions in the framework
of JDSL, a Java library that provides a comprehensive set of data structures.

Examples show how one would use positions and locators, notably in the context
of Dijkstra’s shortest-path algorithm. We also note some of the constant-factor
costs of the design and how they can be reduced. Finally, we discuss the current
state of JDSL in the contexts of teaching and of research.

2 Positions and Locators

We have developed a pair of notions related to the notion of items. On the one
hand, we can talk about a position within a data structure; on the other hand,
we can talk about a locator for an element within a data structure. A position
is a topological construct: one position might be before another in a sequence,
or the left child of another in a binary tree, for example. The user is the one
who decides the relationships between positions; a container cannot change its
topology unless the user requests a change specifically. An element in a container
can always be found at some position, but as the element moves about in its
container, or even from container to container, its position changes.

In order to have a handle to an element regardless of the position at which the
element is found, we introduce the concept of a locator. Whereas the position-to-
element binding can change without the user’s knowledge, the locator-to-element
binding cannot. Thus, positions closely resemble items, and the distinction be-
tween position and locator is new.

These two concepts can be distinguished more clearly by understanding, at a
high level, their implementations. A position refers to a “place” in a collection.
More precisely, a position is a piece of memory that holds

– the user’s element
– adjacency information (for example, next and prev fields in a sequence, right-

child and left-child fields in a binary tree, adjacency list in a graph)
– consistency information (for example, what container this position is in)

Thus, a position maps very closely to a single node or cell in the underlying
representation of the container. Methods of some containers are written primarily
in terms of positions, and a method that takes a position p can immediately map
p to the corresponding part of the underlying representation. Section 3.1 gives
more detail about the implementation of positions in JDSL.

A locator is a more abstract handle to an element, and its implementation
does not map so directly to the underlying memory. Three principles constrain
the implementation:

– For correctness, the container must guarantee that the locator-element bind-
ing will remain valid, even if the container moves the element to a different
position.

– All containers, even containers with very abstract interfaces, must be realized
ultimately in memory, and memory is positional.

– Methods of some containers are written in terms of locators, and a method
that takes a locator ` needs to be able to map ` quickly to the underlying
(positional) representation of the container.

Therefore, in implementation, a locator must hold some positional information
(often a pointer to a position). The container uses this information to map the
locator to the container’s representation, and the container takes care to update
the information when the locator changes position. Section 3.2 gives more detail
about the implementation of locators in JDSL.

2.1 Positional Containers and Key-Based Containers

We distinguish between two kinds of containers, positional and key-based. In
JDSL, the interfaces of positional containers are written primarily in terms of
positions, and the interfaces of key-based containers are written primarily in
terms of locators.

A positional container is a graph or some restriction of a graph. Examples are
sequences, trees, and planar embeddings. A positional container stores the user’s
elements at vertices of the graph, and in some cases also at edges of the graph.
Its interface maps very closely to its implementation, which usually involves
linked data structures or arrays. The positions mentioned in its interface map
to individual nodes or cells of the implementation.

A key-based container is an abstract data type that stores key-element pairs
and performs some service on the pairs based on the keys. Its in-memory repre-
sentation is entirely hidden by its interface; nothing is revealed about where it
stores its elements. Since the hidden representation must be positional, a key-
based container maps the locators mentioned in its interface to the representation
using positional information stored in the locators.

2.2 Examples

We illustrate these concepts using the distinction between a binary tree and a
red-black tree. Drawings of these two data structures might look the same, but
the semantic differences are important: An unrestricted binary tree allows the
user to modify the connections between nodes, and to move elements from node
to node arbitrarily. Hence, a binary tree is positional, and its interface is written
in terms of positions. A red-black tree, on the other hand, manages the structure
of the tree and the placement of the elements on behalf of the user, based on the
key associated with each element. It prevents the user from arbitrarily adjusting
the tree; instead, it presents to the user a restricted interface appropriate to a
dictionary. Hence, a red-black tree is key-based, and its interface is written in
terms of locators. A locator guarantees access to a specific element no matter
how the red-black tree modifies either the structure of the tree or the position
at which the element is stored.

In both cases, the container provides access to its internal organization. The
binary tree provides direct (but limited) access to its nodes (as positions). The
red-black tree provides locators that specify only the order of the keys in the
dictionary, without contemplating the existence of nodes.

A binary tree would support operations like these:
leftChild (Position internalNode) returns Position;

cut (Position subtreeRoot) returns BinaryTree; // removes and returns a subtree

swap (Position a, Position b); // exchanges elements and locators

A red-black tree would support operations like these:
first() returns Locator; // leftmost (key,element) pair

insert (Object key, Object element) returns Locator; // makes new locator

find (Object key) returns Locator;

replaceKey (Locator loc, Object newKey) returns Object; // old key

3 JDSL

JDSL, the Data Structures Library for Java, is a new library being developed
at Brown and at Johns Hopkins, which seeks to provide a more complete set
of data structures and algorithms than has previously been available in Java.
Other goals are efficiency, run-time safety, and support for rapid prototyping of
complex algorithms. The design of containers in JDSL is closer to that of LEDA
and CGAL [5] than to that of STL and JGL. In addition to the standard set of
vectors, linked lists, priority queues, and dictionaries, we provide trees, graphs,
and others. We also have algorithms to run on many of the data structures, and
we are developing a set of classes for geometric computing. The implementations
of data structures are hidden behind abstract interfaces.

The interface hierarchy in figure 1 has two major divisions. One, between
inspectable and modifiable containers, allows us to restrict subinterfaces to in-
clude only methods which are valid. The other, between PositionalContainer and
KeyBasedContainer, implements the distinction we drew in section 2.1 between
these two types of containers. Finally, two interfaces not pictured here imple-
ment the distinction between Position and Locator. PositionalContainer interfaces
are written mainly in terms of Position, while KeyBasedContainer interfaces are
written mainly in terms of Locator.

3.1 Position

The Position interface is present in most methods of positional containers, and
implementations of the Position interface are the basic building blocks of those
containers. Positions are most commonly used to represent nodes in a linked
structure (such as a linked list), or indices in a matrix structure (such as a vec-
tor). In data structures which have different types of positions—such as vertices
and edges in graphs—we use empty subinterfaces of Position useful only for type-
checking purposes. While positions are closely tied to the internal workings of
their container, their public interface is limited, so that they are safe to return
to user code. Most operations must actually be done by calling upon the posi-
tion’s container, passing in the position as an argument—for example, Position

Container

KeyBasedContainer

PriorityQueue

Dictionary

InspectableKeyBasedContainer

Graph

OrderedDictionary

InspectableDictionary

InspectableContainer

InspectableSequence

InspectableGraph

InspectableTree

InspectablePositionalContainer

InspectableBinaryTree

BinaryTree

ModifiableGraph

Sequence

Tree
InspectableOrderedDictionary

PositionalContainer

Fig. 1. A partial hierarchy of the JDSL interfaces.

Sequence.after(Position), which returns the position following the argument in the
list. Only operations applicable to positions from any container are included in
the interface.

public interface Position extends Decorable {
public Object element() throws InvalidPositionException;

public Locator locator() throws InvalidPositionException;

public Container container() throws InvalidPositionException;

public boolean isValid();

}

Note that locators are present even in positional containers, so the Position

interface provides a way to find the locator stored at a given position.
In most implementations, the position classes are inner classes of the con-

tainer that will use them, and have private methods allowing access by the
container to their internals.

Since positions are so strongly tied to the internal structure of the data
structures which contain them, they have no meaning once removed from a
container. Hence, a deleted position is marked as invalid and any subsequent use
of it will raise an exception. In addition, containers throw an exception if they
are passed a position of the wrong class, a null position, or a position from a
different container.

The Position interface is typically implemented either by a node in a linked
data structure, or by a special object in an array-based data structure (see figure
2). We use a special object for two reasons: to store consistency checking infor-
mation, and to adhere to the Java requirement that only objects can implement
an interface. Without that requirement, we could use simply an integer index as
the position.

element e e e

client gets pointer to node

client gets pointer to special object

element

Fig. 2. Two sample implementations of positions in a sequence.

As an example of using Positions in a simple application, we can look at code
which reverses a Sequence (such as a linked list or a vector):

void reverse(Sequence S) {
if(S.isEmpty()) return;
Position front = S.first(), back = S.last();
for(int i=0; i<S.size()/2; i++) {

S.swap(front, back);
front = S.after(front);
back = S.before(back);

}
}

Positions are thus fairly similar to LEDA’s items. The latter have only private
members, and are friends (in the C++ sense) of their container, just as we hide
most Position members except to the container.

Unlike an iterator, a position is always tied to a particular node, and cannot
be used directly to traverse a data structure. Instead, an iterator would use a
pointer to a position as its method of indexing into the data structure.

3.2 Locator

From the point of view of the user, Locators are essentially pointers to elements.
They allow the user to efficiently locate an element within a data structure,
typically in constant time, and to make a request of a data structure to act
on an element. A locator provides a contract to its user that it will always be
associated with a specific element even if the position of that element changes.

interface Locator extends Decorable {
public Object element();

public Container container();

public boolean isContained();

public Object invalidate();

public boolean isValid();

}

Locators are typically used to access (key, element) pairs within KeyBased-

Containers. Upon inserting an element, a locator is created and returned to the
user. The locator can also be retrieved, in a dictionary, by calling find(Object).
This locator can then be used to refer to the pair in constant time: the user need
not search for it for each operation. For instance, the call replaceElement(Locator,

Object) will typically take constant time, whereas a search would likely have
taken logarithmic time. Similarly, replaceKey(Locator, Object) in a priority queue
realized as a binary heap will take logarithmic time, while searching would take
linear time.

In order to guarantee these time bounds, the container must be able to im-
mediately map the locator to the underlying, positional data structure. Because
of this constraint, we have found it useful to implement only one class, Univer-

salLocator, which stores its element and its position within its container. The
user will only see the objects through the Locator interface above. However, the
UniversalLocator class provides some additional methods which allow containers
to modify the locator.

This allows us to implement the concept of universality of locators across a
set of containers. A locator created by one container can be removed from it, and
moved to another container within the set. The locator remains a valid handle
to the element, even when it is not contained in any data structure. In JDSL,
all containers accept UniversalLocator unless they specifically state otherwise.

Universality allows a user to move locators from one data structure to an-
other, as long as all the data structures support UniversalLocator. This is useful, for
example, in sorting applications, where the position-to-element binding is bro-
ken, but the locator-to-element binding need not be. By inserting and removing
locators rather than elements, the author of the sort can allow the user to keep
useful handles to the elements through the locators. For example, consider the
code for a PQ-Sort in figure 3.

Universal locators require some overhead: a Position object needs to be cre-
ated. In most cases, this overhead is acceptable: preliminary experiments indicate
that our red-black tree, written under the paradigm of universal locators, is at
least as fast as the red-black tree in JGL or JDK 1.2 [3]. But the interfaces do
not require that universality be implemented by all locators. This allows poten-
tially smaller or faster data structures in applications where the generality is not
needed. For instance, a red-black tree locator could store its color, children, and
parent, rather than requiring a separate position to store that information (see
figure 4).

public void sort(Sequence S, Comparator c) {
PriorityQueue Q = new VectorHeap(c); // use your favorite PriorityQueue

// remove all elements from S, but retain the same locators
while(!S.isEmpty()) {

Locator loc = S.first().locator() ; // loc is in S
S.removeFirst(); // after this, loc is in no container
Q.insert(loc); // now loc is in Q

}

// remove all elements from Q in ascending order
while(!Q.isEmpty()) {

S.insertLast(Q.removeMin()); // move the locator from Q to S
}

}

Fig. 3. A PQ-sort implementation. Note how the locators can be preserved as they
move from the sequence into the priority queue and back.

4 Labeling and Iterating in JDSL

4.1 Decorable

Many algorithms need to store extra state associated with the positions or ele-
ments of the data structures they use. For example, in a breadth-first or depth-
first search over a graph, we need to mark nodes as visited. Essentially, we want
to add decorations or attributes to the positions of our data structures.

We can imagine the system as a two-dimensional matrix of values, with posi-
tions indexing the rows and attribute names indexing the columns [15]. We need
to be able to find the value of a specific attribute for a specific position. The
three solutions commonly used now are:

1. to copy the data structure into one which has the extra instance variables,
2. to use an external dictionary indexed by the positions (the column-based

option), and
3. to associate an internal dictionaries with each positions (the row-based op-

tion); the dictionaries are indexed by attribute names.

The first solution clearly involves a large amount of copying of data struc-
tures. In a situation where a large number of relatively quick algorithms are
being used, this could affect speed significantly.

The second solution is implemented in LEDA’s node map, edge map, node array,
and edge array. In JDSL, the column-based solution can be implemented simply
by instantiating a hash table or other dictionary, using the hashcode() function of
the positions as the key into the dictionary. Thus, no library support is required
for the column-based solution.

JDSL supports the third solution; library support is required if the row-
based solution is to exist at all. Position extends the Decorable interface, which
requires that all positions have a dictionary associated with them. This is also the
approach taken in the ffGraph library [17], which calls the attributes “labels”.
Under the assumption that there are more positions than there are decorations,
the row-based solution is asymptotically faster than the column-based in the
worst case. In the average case, the efficiencies are the same.

4.2 Enumerations

While one use of iterators is to encapsulate a position, they are also useful in
iterating over an entire container. To support this functionality, JDSL requires
that its data structures provide Enumerations over interesting sets of elements,
positions, and locators.

One difficulty we noted with an iterator is its behavior upon modification of
the underlying container. To avoid the issue, we specify that Enumerations provide
a snapshot of the data. That is, subsequent modifications to the data structure
over which we are enumerating do not modify outstanding enumerations. In
general, a user who asks for an enumeration will use every element of it, so we
are not affecting asymptotic efficiency. Also, we have developed optimizations to
further reduce the cost (see section 4).

5 Examples of JDSL Containers

To bring together all the concepts we have discussed so far, we present exam-
ples implementations of three data structures. The following schematic figures
show our standard implementations of binary trees, red-black trees, and general
graphs:

Pos.

null null

null

Binary Tree

null null

Universal Locator

Object (element)

Pos.

null null null null

Color

Object (key)

null

Red-Black Tree

Universal Locator

Object (element)

Fig. 4. Implementation of a BinaryTree, and implementation of a Dictionary as a red-
black tree. Note the two have very similar diagrams, although the user sees very dif-
ferent interfaces.

Edge

ORD

SFO
Vertex

Incidence List

Edge

1:40

3:42

3:
33

2:15

2:
07

3:0
5

from

Locator

1:40D
ec

or
at

io
n

Ta
bl

e

fro
m

fro
m

D
ec

or
at

io
n

Ta
bl

ePVD

Edge

to
to

to

Locator

PVD

DFW

Fig. 5. Implementation of a Graph. Note Vertex and Edge are both empty subinterfaces
of Position.

6 Example of an Algorithm

We present, as an example, a simple implementation of Dijkstra’s algorithm
for finding shortest paths; the implementation is based on [4]. The algorithm is
typically used to illustrate the programming methodology of a library [15]. We
assume the edges of the graph are weighted, using the Decorable mechanism, with
non-negative Integer weights.

Here we use both positions and locators. The positions of a graph are its edges
and vertices—this is reflected in JDSL by having Edge and Vertex extend Position.
It is by using these that the algorithm traverses the graph. The locators we use
allow us to find the vertices in the priority queue. We insert pairs (distance,
vertex) into the queue, which represent the shortest yet known distance to the
vertex. A vertex is chosen only if it is the closest vertex to the source that we
have not yet encountered. When we choose a vertex, we discover all its edges.
Through these edges, we may find a shorter path to another vertex. If we do, we
need to update the key of the vertex within the queue (since the vertex should
be removed from the queue earlier than previously believed), which we can do
efficiently because we kept a locator to the vertex.

/**
* Dijkstra’s algorithm on an InspectableGraph, using integer weights.
* The output is a list of edges which define the shortest path from s to t.
*/

public class Dijkstra {
public Dijkstra(InspectableGraph g, Vertex s, Vertex t, Object weight) {

graph = g;
weight = weight;
s = s; t = t;

initialize();
run();
buildPath();
cleanup();

}

private void run() {
while(!pq .isEmpty()) {

Vertex v = (Vertex) pq .removeMin();
if(v==t) return; // if true, we’ve found the shortest path to t

int distance = distance(v);

// for all outgoing edges. . .
for(Enumeration edges = graph .outIncidentEdges(v);

edges.hasMoreElements() ;) {
Edge e = (Edge) edges.nextElement();
Vertex dest = graph .destination(e);

int cumulative = weight(e) + distance;

if(cumulative < distance(dest)) { // relax the edge if applicable
Integer newdist = new Integer(cumulative);
pq .replaceKey(locator(dest), newdist);
dest.set(incoming , e);

}
}

}
}

// Create appropriate decorations and put vertices into the heap
private void initialize() {

for(Enumeration verts = graph .vertices(); verts.hasMoreElements();) {
Vertex v = (Vertex)verts.nextElement();
v.create(locator , pq .insert(INFINITE, v));
v.create(incoming , null);

}
// we have set s to have infinite distance, but it has 0 distance
pq .replaceKey(locator(s), ZERO);

}

// Build the list of edges from source to destination
private void buildPath() {

Vertex v = t ; // we’re going backwards. . .
while(v!=s) {

Edge e = incoming(v);
output .insertFirst(e); // so we insert at the head
v = graph .origin(e);

}
}

// Clean up: destroy all decorations we created.
private void cleanup() {

for(Enumeration verts = graph .vertices(); verts.hasMoreElements();) {
Vertex v = (Vertex)verts.nextElement();
v.destroy(locator);
v.destroy(incoming);

}
}

// Return the path as an enumeration of edges from s to t.
public Enumeration getPath() { return output .elements(); }

// some accessors
private Locator locator(Vertex v) { return (Locator)v.get(locator); }
private int distance(Vertex v) {

return ((Integer)pq .key(locator(v))).intValue();
}
private Edge incoming(Vertex v) { return (Edge)v.get(incoming); }
private int weight(Edge e) { return ((Integer)e.get(weight)).intValue(); }

// data structures we will be using
private InspectableGraph graph ;
private PriorityQueue pq = new VectorHeap(new IntegerComparator());
private Sequence output = new NodeSequence();

// the source and destination of the path
private Vertex s , t ;

// keys for decorations
private Object weight ;
private Object locator = new Object();
private Object incoming = new Object();

// “infinity” and zero for the purposes of this program
private static final Integer INFINITE = new Integer(Integer.MAX VALUE);
private static final Integer ZERO = new Integer(0);

}

7 Optimizations

JDSL’s use of locators and positions is asymptotically efficient; algorithms do
not suffer increased complexity, either in the worst case or in the average case,
because access via locators and positions requires constant time. But a library
which claims to be all-powerful invariably suffers from constant-factor efficiency
losses: there are clear tradeoffs among power, elegance, and speed. We have devel-
oped some optimizations which should make JDSL competitive with other data
structures libraries in terms of speed. Experiments are in progress to compare
actual performance of JDSL with that of other libraries.

7.1 Lazy Allocation of Locators

One concern is caused by the requirement for each element to be associated
with a locator. This obviously creates a large number of extra objects. Further,
in PositionalContainers, the locators often go unused—they may be powerful, but
many applications do not need the power. Therefore, most data structures in
the library follow an allocate-on-use policy for creating locators. If the user asks
to get a locator, via the Position.locator() method, for example, one is created.
Otherwise, we short-circuit and store an element directly.

This can save considerable time and space, especially in situations where we
are creating and destroying large numbers of positions, without ever querying
them for a locator. The only cost here is a check and conditional branch whenever
the element or locator is queried from a position, to see if the locator has been
allocated or not.

7.2 Enumeration Caching

Another concern is the time used in building enumerations. Since these are snap-
shots of the data structures, creating them will take time at least linear in the
number of elements to be included in the enumeration. Here we have applied a
copy-on-write policy for some data structures: when an enumeration is asked for,
we create an array which stores all the objects over which to enumerate, then
return an enumeration over that array. If the same enumeration is asked for
again, we can simply return another enumeration object, over the same array—
in constant time. If a call is made to a function which modifies the correct data
to return, we discard our array (Java’s garbage-collection scheme takes care of
disposing of it).

In this way, we are optimizing for having a number of read-only calls in
between phases of modification. This is in fact realistic: a common use of a data
structure is to fill it with data, then run some algorithms on it which only inspect
the data.

The cost of this method is none in terms of time, but in most implementa-
tions, we have to keep an extra copy of the data around between the time an

enumeration has been called for and the next modification. If we have multi-
ple enumerations simultaneously, however, we save space since we share a single
copy among them.

The method works especially well for array-based data structures. In these,
the array itself can be used as the cached copy, so that even the first enumeration
call can be done in constant-time. Only if the container is modified while there
are enumerations outstanding do we actually need to copy any data.

8 Experience with JDSL

JDSL has a companion teach version [19] geared for pedagogical use. It has been
used successfully in first-year, one-semester, CS2-level classes at Brown [16] and
Johns Hopkins, and is the library discussed in the textbook by Goodrich and
Tamassia [9]. At Brown, over a hundred CS2 students implemented the following
data structures and algorithms using the JDSL teach library:

– Sequence, implemented with a circular array
– Binary search and quicksort of a Sequence
– Binary tree
– Binary heap, reusing the binary tree
– Red-black tree, reusing the binary tree
– Hash table
– Rabin-Karp string-searching algorithm
– Convex hull algorithm, using package wrap
– Spanning tree of an undirected graph
– Directed graph
– Prim’s minimum-spanning-tree algorithm
– Dijkstra’s shortest-path algorithm

The methodology of the library allows projects that are more theoretically
sophisticated than were possible in past years, and more full-featured. Data
structures met the interfaces specified by JDSL. For instance, most data struc-
tures included a full suite of modifiers (insertion, deletion, and replacement) and
thorough error handling via exceptions. Students were supported by visualizers
and testers written within JDSL [1].

A number of implementation projects have been written based on the re-
search version of the library, as well. Various point location algorithms have
been implemented [14]. A planar map (an embedded planar graph, or EPG)
has been implemented [10], with operations that preserve planarity. The EPG
is built on top of an ordered graph from the library. On top of the EPG, there
are algorithms for orthogonal drawings of graphs [7] and for finding the shortest
path between two points in the interior of an arbitrary polygon [2]. Finally, a
vector class with efficient insertion at arbitrary positions has been implemented
[8].

Acknowledgments

We would like to thank the entire JDSL team for their work on the project—in
particular, Andy Schwerin and Maurizio Pizzonia for their constructive criticism
of this paper, and John Kloss for helpful comments regarding topics related to
the paper.

References

1. R. Baker, M. Boilen, M. T. Goodrich, R. Tamassia, and B. A. Stibel. Testers and
visualizers for teaching data structures. In Proc. ACM Symp. Computer Science
Education, 1999.

2. J. Beall. Shortest path between two points in a polygon.
http://www.cs.brown.edu/courses/cs252/projects/jeb/html/cs252proj.html.

3. M. Boilen, A. Schwerin, and J. Kloss. Personal communication.
4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.
5. A. Fabri et al. The CGAL kernel: A basis for geometric computation. In Proc. 1st

ACM Workshop on Appl. Comput. Geom., pages 97–103, May 1996.
6. N. Gelfand, M. T. Goodrich, and R. Tamassia. Teaching data structure design

patterns. In Proc. ACM Symp. Computer Science Education, 1998.
7. N. Gelfand and R. Tamassia. Algorithmic patterns for graph drawing. In Proc.

Graph Drawing ’98. Springer-Verlag, to appear.
8. M. T. Goodrich and J. Kloss. Tiered vector: An efficient dynamic array for JDSL.

Poster at OOPSLA’98.
9. M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. Wiley,

New York, NY, 1998.
10. D. Jackson. The TripartiteEmbeddedPlanarGraph. Manuscript.
11. K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric

computing. Commun. ACM, 38(1):96–102, 1995.
12. M. Nissen. Graph iterators: Decoupling graph structures from algorithms. Diploma

thesis, Max-Planck-Institut für Informatik, Univ. Saarlandes, Saarbrücken, Ger-
many, 1998.

13. B. Stroustrup. The C++ Programming Language (3rd Edition). Addison-Welsey,
Reading, MA, 1997.

14. R. Tamassia, L. Vismara, and J. E. Baker. A case study in algorithm engineering
for geometric computing. In Proc. Workshop on Algorithm Engineering, pages
136–145, 1997.

15. K. Weihe. Reuse of algorithms: Still a challenge to object-oriented programming.
In Proc. OOPSLA ’97, pages 34–48, 1997.

16. CS 16 home page. http://www.cs.brown.edu/courses/cs016.
17. ffGraph home page. http://www.fmi.uni-passau.de/˜friedric/ffgraph/main.shtml.
18. Java 1.2 API. http://java.sun.com/products/jdk/1.2/docs/api/index.html.
19. JDSL home page. http://www.cs.brown.edu/cgc/jdsl.
20. JGL home page. http://www.objectspace.com/jgl.
21. LEDA home page. http://www.mpi-sb.mpg.de/LEDA.

