
Algorithmic Patterns for Orthogonal

Graph Drawing?

Natasha Gelfand Roberto Tamassia

Department of Computer Science
Brown University

Providence, Rhode Island 02912–1910
{ng,rt}@cs.brown.edu

Abstract. In this paper, we present an object-oriented design and im-
plementation of the core steps of the giotto algorithm for orthogonal
graph drawing. Our design is motivated by the goals of making the al-
gorithm modular and extensible and of providing many reusable compo-
nents of the algorithm. This work is part of the jdsl project aimed at
creating a library of data structures and algorithms in Java.

1 Introduction

In the last few years, there has been an increasing interest in applications of
software engineering concepts, such as object-oriented programming and design
patterns, to the area of design and implementation of data structures and algo-
rithms (see, e.g. [19, 18]).

Traditionally, algorithms have been implemented in a way that would max-
imize their efficiency, which frequently meant sacrificing generality and exten-
sibility. The area of algorithm engineering is concerned with finding ways to
implement algorithms so that they are generic and extensible. One of the pro-
posed concepts is that of an algorithmic pattern [18]. Similar to the design pat-
terns [9] in software engineering, algorithmic patterns abstract and generalize the
algorithms and data structures of common use. They allow the programmer to
implement new algorithms by extending already existing ones, thus reducing the
time spent coding and debugging. In many cases, algorithmic patterns abstract
out the core of several similar algorithms, and the programmer only has to im-
plement the extensions of the core that are needed for a specific algorithm. The
object-oriented approach to algorithm implementation incurs some overhead due
to the indirection, and yields implementations that are slower than the ad-hoc
ones. For applications where fast running time is essential, the object-oriented
approach is intended to be used for rapid prototyping of new algorithms, which,
once fully designed, can be efficiently implemented using traditional methods.

In this paper, we describe an object-oriented design and implementation of
the core steps of giotto drawing algorithm [17], orthogonalization and com-
paction, which construct a planar orthogonal drawing of an embedded planar
? Research supported in part by the U.S. Army Research Office under grant DAAH04-

96-1-0013 and by the National Science Foundation under grants CCR-9732327 and
CDA-9703080



graph with the minimum number of bends [16]. We present a new algorithmic
pattern called algorithmic reduction, which provides conversion among different
types of data structures. Reductions are often used to convert data structures
into the form required by certain algorithms. giotto is particularly suitable as
a case study for the use of algorithmic reductions because it consists of many
steps where the original graph is converted into various other structures (e.g., a
flow network).

Our implementation of giotto is part of the GeomLib project [18]. Geom-

Lib is a reliable and open library of robust and efficient geometric algorithms
written in Java. It is part of a larger project, named jdsl [10, 11], aimed at con-
structing a library of algorithms and data structures using the Java programming
language.

The rest of this paper is organized as follows. In Section 2, we present a
brief description of the jdsl objects used in our implementation of giotto,
especially the concept of decorations. In Section 3, we describe how algorithms
are implemented in jdsl and introduce the concept of algorithmic reductions.
The object-oriented design of giotto is described in Section 4. In Section 5, we
compare our implementation with two other implementations of giotto.

2 JDSL Structures

Data Structures for Graphs jdsl contains three different graph structures
represented by the interfaces Graph, OrderedGraph, and EmbeddedPlanarGraph.
All graphs are “mixed graphs,” that is, they can contain both directed and
undirected edges at the same time. The interfaces provide methods for dealing
with the different types of edges both together and separately.

The Graph interface models a graph as a combinatorial object, that is a
container of vertices and edges. The Graph interface provides methods for adding
and removing vertices and edges, as well as methods for examining the graph
structure.

The OrderedGraph interface inherits from the Graph interface and describes
a graph as a topological structure by adding information about the ordering of
the edges around each vertex. OrderedGraph provides additional methods that
manipulate the topological information.

The EmbeddedPlanarGraph interface describes an ordered graph whose or-
dering of the edges around each vertex is induced by a planar embedding of
the graph (hence it extends OrderedGraph). In addition to storing vertices and
edges, EmbeddedPlanarGraph also stores the faces of the embedding. It provides
additional methods that access various information about the faces of the em-
bedding.

Decorations Frequently, in implementing algorithms, it is convenient to asso-
ciate extra information, either permanent or temporary, with the elements of
the algorithm’s input. In graph algorithms, the elements that we want to aug-
ment with extra information are vertices, edges, and faces of the input graph.
This extra information, called decorations or attributes, can be used as tempo-
rary scratch data (for example, to mark vertices of a graph as visited during



a traversal algorithm), or to represent the output (for example, to store geo-
metric information in a graph drawing algorithm). In writing the pseudocode of
an algorithm, decorations are used implicitly (we often say “mark vertex v as
visited”), and it is left to the programmer to determine exactly how they should
be implemented (for sample implementations see, e.g [15, 6]).

In the jdsl framework, each vertex, edge, and face contains a hash table for
storing its decorations. Each decoration has a key (which is its key in the hash ta-
ble) and a value, both represented by a Java Object. The interfaces Vertex, Edge,
and Face extend the interface Decorable, which provides methods for creating,
deleting, and setting the values of decorations, as well as accessing all decora-
tions of the object at once. The use of decorations is intuitive, since for each
action that may potentially be performed on a decoration, the Decorable inter-
face provides a corresponding method. Thus, most manipulations of decorations
require only a single method call.

3 Algorithms and Reductions

Algorithms as Objects In the jdsl framework, algorithms are modeled by
objects instead of just procedures (an approach also discussed in [7]). This ap-
proach presents the advantage of being able to store within the algorithm its
input and output, as well as other information such as auxiliary variables and
data structures used by the algorithm. In other words, this approach gives a
state to the algorithm. An algorithm object is created with an instance of its in-
put, provides a way to compute its output (frequently right in the constructor),
and a variety of accessor methods that can be used to examine its state once the
computation is finished.

As an example, consider again an algorithm that performs a depth-first
traversal starting at a given vertex. The main output of this algorithm is a
depth-first tree corresponding to the traversal. Thus, the algorithm object will
provide a method that can be used to examine the tree once it is computed.
However, in the course of computing the tree, the algorithm uses internal mark-
ing to indicate that a given vertex has been visited. Usually, this marking is
only temporary (the data structure that stores it is local to the algorithm pro-
cedure). If an algorithm is modeled as an object, the marking can be stored
inside the object and will remain valid even after the computation is finished.
The algorithm object will provide a method to access this internal data, which
can be used, for example, to determine whether a given vertex belongs to the
connected component of the start vertex. The algorithm’s state persists as long
as the algorithm object does (until it is deleted or garbage collected), and can
be examined any number of times without having to be recomputed.

Modeling algorithms as objects and storing the results of their computation
as state allows the same algorithm to compute several different results. In the
course of computing a DFS tree, the depth-first traversal algorithm can also
classify edges as discovery and back, compute the start and finish times for each
vertex, etc. This information is computed as a side-effect of computing a DFS
tree, but if it is stored inside the algorithm object, it allows the object to be used
for purposes other than just traversal. In fact, the user who is only interested in



whether a given edge is discovery or back need not be aware of the fact that the
algorithm object computes other information as well. The user can instantiate
the algorithm object with the desired input, and use the accessor method that
returns the type of each edge, ignoring any other accessors the object may have.

Another advantage to modeling algorithms as objects is the ability to define
relationships among different algorithms. An algorithm can extend another and
specialize some of its parts, several algorithms can implement the same interface
or extend the same base class, or an algorithm can use another as a subcompo-
nent.

Reductions In this section, we describe the pattern of algorithmic reduction.
Often an algorithm can be implemented by making some alterations to its input,
using another algorithm on the modified input, and then undoing the modifi-
cations and interpreting the algorithm’s results to provide the answer to the
original problem. When this is the case, all too often the transformations and
the algorithms are clumped together, preventing reuse of any of the components.
A reduction is an object responsible for the first and the last step of the computa-
tion described above, that is for transformation of the input to fit an algorithm’s
requirements and for undoing the alterations and interpreting results.

A reduction, just as an algorithm, is modeled by an object. A reduction object
is created with an instance of its input and proceeds in two directions, forward
and reverse. In the forward direction the reduction alters its input in a specified
way, often to make it fit the input requirements of some algorithm. Once an
algorithm has been run on the modified input, the reduction undoes the changes
to its input and possibly transforms the output of the algorithm to provide
an answer to the original problem that used that reduction. Thus, a generic
Reduction object has two methods forward() and reverse() and its functionality
is to report an error when reverse() is called before forward() (since in that case
the reduction does not make sense). The subclasses of this class define these
methods to carry out the specific transformations.

Reductions and algorithm objects are frequently combined together as com-
ponents of other algorithms. By dividing the components of an algorithm’s im-
plementation into reductions and algorithms, we clearly separate the transforma-
tion and computation steps (which usually alternate). In this scheme, algorithms
should never modify the structure of their input, all modifications are done by
the reductions so that they can be undone later. When we look at an imple-
mentation of an algorithm, we can easily identify which steps modify the input
and which just perform computations, since they are modeled by fundamentally
different objects.

4 GIOTTO Implementation

In this section, we show how using the jdsl components and algorithmic patterns
described above, we can create a simple, modular, and extensible implementation
of the core steps of the giotto algorithm: orthogonalization and compaction.

Our implementation consists of two main components each modeled by an
algorithm object. The first component is the orthogonalization algorithm, which



constructs an orthogonal representation of a given embedded planar graph. In the
current implementation, this algorithm accepts only embedded 4-planar graphs
(embedded planar graphs whose vertices have degree at most four), however we
plan to add a reduction from general embedded planar graphs to embedded 4-
planar graphs, which would allow this algorithm to operate on any embedded
planar graph. The second part of the implementation is the compaction algo-
rithm, which accepts as input a 4-planar graph and its orthogonal representation
and produces a planar orthogonal drawing where each vertex is represented by
a point, and each edge by a chain of vertical and horizontal segments. Although
these algorithm objects were developed as parts of the overall giotto imple-
mentation, their modular design allows them to be used independently, which
means they can be reused as parts of other algorithms.

CopyingReductionFlowReductionCompactEdgesReduction

AddSTReduction

GeometricReduction

GeometricReductionStep

CompactVerticalEdgesReduction

CompactHorizEdgesReduction

RectangularizeFacesReduction

RemoveBendsReduction SplitFaceReduction ExpandVertexReduction

Reduction

Fig. 1. Inheritance hierarchy of the reductions used by our implementation of the
giotto algorithm. Abstract classes are represented by shaded boxes.

Orthogonalization Algorithm The orthogonalization algorithm [16] accepts
as its input an embedded 4-planar graph with a fixed external face and produces
an orthogonal representation of the graph with the minimal number of bends. We
briefly review the algorithm following the description in [4]. For each (undirected)
edge with endpoints u and v, call the two possible orientations (u, v) and (v, u)
darts. The orthogonal representation of a graph is defined by assigning to each
dart values α and β defined as follows:
– α(u, v) · π/2 is the angle at vertex u formed by the first segment of this dart

and the next dart counterclockwise around u;
– β(u, v) is the number of left turns of value π/2 that are made when traversing

the dart from origin to destination.
The implementation of the algorithm is broken down into several objects that

model the computational steps above.
Orthogonalize This object models the orthogonalization algorithm itself. Its

input is an instance of EmbeddedPlanarGraph and a designated external face
which are provided to the object’s constructor (where the computation of
the orthogonal representation is performed). Orthogonal representation is
modeled by associating with each edge an array of two Dart objects (with



computed α and β values) using a decoration. The key to this decoration
as well as all intermediate data generated by the computation (e.g. a flow
network and the flow information) can be retrieved from the object using
the accessor methods.

FlowReduction (see Figure 1) This subclass of Reduction is responsible for con-
verting an EmbeddedPlanarGraph into a flow network (modeled by an object
of type Graph) and then interpreting the results of the minimum cost flow
algorithm to compute an orthogonal representation. In the forward() method
of the reduction, the flow network is constructed piecewise by each dart. The
reverse() method, called once a flow algorithm has decorated each edge of
the network with the amount of flow in it, computes the orthogonal repre-
sentation by calling an appropriate method of each dart that interprets the
flow and computes α and β values.

Orthogonalize FlowReduction RemoveLowerBoundReduction MinCostFlow

new FlowReduction

forward

new RemoveLowerBoundReduction

forward

new MinCostFlow

reverse

reverse

Fig. 2. Interaction diagram of the orthogonalization algorithm

The interaction diagram of the orthogonalization algorithm is shown in Fig-
ure 2. The computation, which is done in a separate protected method called
from the constructor, proceeds by creating an instance of FlowReduction and
calling its forward() method to build the flow network. The flow computation in
the resulting network is done in a separate method. This provides the flexibility
of allowing the user to redefine the minimum cost flow algorithm that is used.
We provide a default implementation, but using another implementation is easy,
all that is necessary is subclassing the Orthogonalize class and redefining the
computeFlow method. All information necessary for the computation is passed
to this method so that the programmer need not know the internal state of the
algorithm object. This is an example of the template method pattern [9, 8] that
often comes up in the object-oriented design of algorithms.

In order to make Orthogonalize fully functional, we provide an implementa-
tion of computeFlow method using the cycle-annealing algorithm described in [1].
The algorithm assumes that the edges of the network do not have a lower bound,
so a reduction is used to transform the flow network into the form required by
the algorithm. The forward() method adjusts the production of vertices and ca-
pacities of edges so that the lower bound can be removed. The reverse() method



adjusts the computed flow to correspond to the correct flow in the original net-
work.

Once the lower bound is removed, we can use the cycle-annealing algorithm
to compute the minimum cost flow. This algorithms uses several other objects
as subcomponents. The initial flow in the network is computed by an object
modeling the Ford and Fulkerson augmentation algorithm. The flow is stored
as a decoration of the edges of the network. This flow algorithm operates on a
single-source, single-sink flow network, so a reduction described in Section 3 is
used to convert the network produced by the FlowReduction into the required
form. The negative cost cycles are computed by a subclass of a Bellman-Ford
algorithm object.

Compaction Algorithm The compaction algorithm [16] takes as its input
an embedded planar graph and its orthogonal representation and produces a
drawing of the graph by associating a point with each vertex and a chain of
vertical and horizontal segments with each edge. We briefly review the algorithm
following the description in [4].

The algorithm first transforms the input graph into a graph whose faces all
have rectangular shape by adding fictitious vertices at edge bends and decom-
posing the non-rectangular faces into rectangles by means of fictitious edges.
The algorithm then computes the length of the edges in the resulting graph.
There are several ways to compute edge lengths, so the algorithm’s design again
uses a template method to allow the user to specialize the computation. The de-
fault implementation computes the lengths of the vertical and horizontal edges
separately using an optimal weighted topological numbering algorithm. To com-
pute the lengths of the vertical edges, the algorithm orients each vertical edge
from top to bottom, condenses maximal runs of horizontal edges into vertices
and computes an optimal weighted topological numbering of the resulting planar
st-graph with respect to unit edge lengths. The length of a vertical edge is set
to be the difference between the topological numbers of its two endpoints. The
lengths of the horizontal edges are computed analogously. The final step of the
algorithm generates a geometric object for each vertex and edge of the input
graph.

The compaction algorithm is modeled by the CompactOrthogonal algorithm
object. The computation of the drawing can be broken up into three stages: the
refinement of faces into rectangles, performed in the forward() method of the
RectangularizeFacesReduction, the length computation, performed in the com-
puteLengths method of CompactOrthogonal class, and the assignment of geomet-
ric objects, performed in the reverse() method of the reduction. The interaction
diagram of this algorithm is shown in Figure 3.

We will first describe the objects used in the computation of edge lengths.

CompactEdgesReduction (see Figure 1) This abstract subclass of the generic
Reduction takes as its input an EmbeddedPlanarGraph and its orthogonal
representation in the form of Dart objects attached to the edges. The for-
ward() method of the reduction produces a planar st-graph by condensing
some edges into vertices, and orienting other edges in a given direction. The



new CompactVerticalEdgesReduction

forward

new WeightedTopNumbering

forward

new RectangularizeFacesReduction

CompactOrthogonal

reverse

new CompactHorizEdgesReduction

forward

new WeightedTopNumbering

reverse

reverse

RectangularizeFacesReduction

CompactVerticalEdgesReduction CompactHorizEdgesReduction

WeightedTopNumbering WeightedTopNumbering

Fig. 3. Interaction diagram of the compaction algorithm

discriminators for identifying which edges should be condensed and which
oriented are provided by the subclasses of this class. The reverse() method
anticipates that the vertices of the st-graph have been decorated with their
topological numbering and uses the numbering to compute the lengths of
the edges of the original graph. The lengths are stored as decorations of the
edges.

UnitWeightedTopNumbering This objects models an algorithm for computing
optimal weighted topological numbering of a digraph. The algorithm stores
the numbering of each vertex as a decoration and provides a method to
access the decoration’s key.

The computeLnegths method proceeds by creating an instance of CompactVer-
ticalEdgesReduction and calling its forward() method to obtain a graph corre-
sponding to the input graph with contracted runs of vertical edges. In the next
step, an instance of UnitWeightedTopNumbering is constructed using the graph
obtained from the previous step as its input, the execution of this algorithm
decorates the vertices of the graph with their topological numbers. The reverse()
method of the reduction is called next, it uses the just computed numbering dec-
oration to compute lengths of the horizontal edges and store them using another
decoration. Analogously, vertical edge lengths are computed using a CompactHo-
rizEdgesReduction and another instance of UnitWeightedTopNumbering.

We now turn our attention to the refinement procedure. In order to transform
the faces of the graph so that they all have rectangular shape, it is necessary to
add fictitious vertices at edge bends and split non-rectangular faces into rectan-
gular components with fictitious edges. These operations present a book-keeping
complication. In the jdsl implementation of graph structures, when an edge is
split with a vertex, two new edges are generated, while the original edge becomes
invalid. A similar situation occurs when a face is split with an edge. We would
like to implement a reduction that would modify the original graph by splitting
some of its components, but once reversed give back the unaltered graph. In
order to do this, however, we may have to keep track of the edges that were



split and insert them back when the reduction is reversed. Such book-keeping
is rather cumbersome to implement. Instead, we propose an alternative strat-
egy. Whenever a reduction destructively modifies its input graph, it creates an
exact copy of that graph first and makes the alterations on the copy. Mapping
between the elements of the original graph and the elements of the copy can
be done through decorations. Each vertex, edge, and face of the original graph
is decorated with the corresponding element of the copy, and vice versa. When
the reduction is reversed, instead of trying to patch up the modified graph, it
uses the information computed for the copy (which usually takes form of decora-
tions) to determine the correct output for the original graph. Once all necessary
information is transfered from the copy to the original, the copy graph can be
thrown away (deleted or garbage collected).

Operations that slightly alter the structure of a graph to make it satisfy a
given criterion are quite common in graph drawing algorithms. In fact, the need
to model such operations generically was the main motivation for developing
the pattern of algorithmic reductions. We have developed a hierarchy of graph-
modifying reductions (see Figure 1) that reflects the different situations where
these reductions can be used.

CopyingReduction This subclass of the Reduction class is the parent of all reduc-
tions that act on instances of Graph interface and destructively modify their
input. The class provides a method which creates an exact copy of the re-
duction’s input graph. The reduction also provides keys to two decorations:
mapping from the elements of the original graph to the elements of the copy
and vice versa.

GeometricReduction This reduction is the superclass of structure-altering reduc-
tions used by graph drawing algorithms. The graph objects that it operates
on are of type EmbeddedPlanarGraph. Subclasses of this reduction are usu-
ally structured as follows: in the forward() method the input graph is copied
and altered. The reverse() method computes the geometric shapes for the
elements of the input graph based on the information computed by an al-
gorithm acting on the copy of the original graph. Geometric information is
stored as decorations of the elements of the input graph.

RectangularizeFacesReduction, which performs the refinement procedure in
the CompactOrthogonal algorithm is a subclass of GeometricReduction since in
its forward step it makes alterations to the graph structure, and in the reverse
step it computes geometric information for the graph. The reduction proceeds
by making many elementary changes to the graph structure, such as splitting
an edge or a face. Each of these changes can in turn be modeled as a separate
object, with several of such objects combined to form the complete reduction.
Thus, another subclass of GeometricReduction is GeometricReductionStep, which
models an alteration of one element (vertex, edge, or face) of a graph structure.
Subclasses of this class operate on a copy of the original graph (since the changes
they may make destructive changes), but they may either use a copy provided
to their constructor, or create one of their own. Each GeometricReductionStep is
created with a graph element that it will modify in its forward() method and pos-



sibly decorate with its geometric representation in the reverse() method. giotto

implementation uses the following subclasses of the GeometricReductionStep

RemoveBendsReduction This reduction models removal of bends from a single
edge of a graph. In the forward() method of the reduction the correspond-
ing copy edge it split by inserting a “dummy” vertex for each bend of the
edge. The reverse() method of the reduction decorates the input edge with
its geometric representation — a chain of vertical and horizontal segments.
The reduction uses the information about the length of each edge, which
was computed between the calls to forward() and reverse() to compute the
geometric representation.

SplitFaceReduction The input of this reduction is a face of the graph which
is not rectangular. The forward() method of the reduction decomposes the
corresponding face of the copy into its rectangular components by splitting
it with several edges. The reduction determines the locations for the split-
ting edges by traversing the face counterclockwise performing a split every
time a right turn is encountered. Since a face does not have a geometric
representation in the drawing reverse() method of this reduction is empty.

ExpandVertexReduction This object will be used as a subcomponent of the re-
duction object to convert a general embedded planar graph into 4-planar.

In its forward() method RectangularizeFacesReduction creates an instance of
RemoveBendsReduction for each edge that has bends, and an instance of SplitFac-
eReduction for each non-rectangular face. The reduction steps are constructed
with the copy of the original graph created by the RectangularizeFacesReduction,
since there is no need to copy the graph for each little alteration. Executing
forward() methods of all reduction steps refines all faces of the copy graph into
rectangles. In the reverse() method, the reduction creates geometric representa-
tions of the vertices of the graph (since no vertex refinement was done), undoes
the step reductions, which creates geometric representations for the edges with
bends, and finally creates geometric representations for the remaining edges.
Since all alterations were made on a copy, there is not need to make any modi-
fications to the input graph.

5 Design Evaluation and Comparison

Graph Hierarchy jdsl does not make a detailed classification of graphs and
their drawings based on their specific properties. All types of graphs are modeled
by the Graph interface if they contain only combinatorial information, and by
EmbeddedPlanarGraph interface if they also contain the topological information.
Thus, in the jdsl framework there are no special classes for a DAG, a biconnected
graph, a 4-planar graph, etc. A DAG, for example, is just a Graph which happens
to have only directed edges and no directed cycles.

A design which models each graph type which has some special properties
with a separate class is also possible. This approach is used in the design of the
GDToolkit [12] graph drawing package (the successor to Diagram Server [2,
5]). GDToolkit provides a hierarchy of graph classes, where addition of spe-



cial properties or structure is modeled through inheritance. For example, an
orthogonal planar undirected graph adds to a planar undirected graph informa-
tion about the number and angles of bends, and is, therefore, modeled as its
subclass.

In the jdsl framework, the conversion between different types of graphs
does not require creating new graph objects, just modifying existing ones. For
example, to create a directed graph from an undirected one, all that is required
is to set the direction of the edges using, e.g., the setDirectionFrom(Edge, Vertex)
method of the Graph interface. If a directed graph is modeled by a separate class,
as it is done in GDToolkit, a new object has to be created, using the original
graph as a parameter in the conversion constructor. The drawback of creating a
new object is the fact that a given graph cannot be made directed, a conversion
constructor will create a graph which is a directed copy of the original. This
presents a difficulty since any objects referencing the vertices and edges of the
original graph will have to be updated to reference the elements of the new one
or a mapping between the new and old elements will have to be created.

On the other hand, not having separate classes for the special types of graphs
complicates error checking. In jdsl, since there is no type for a digraph, an
algorithm that operates on digraphs takes just a Graph as its input. It then
has to check at runtime that its input is correct, that is that the graph only
has directed edges, and report an error if that is not the case. If a digraph is
implemented as its own type, however, any algorithm that accepts an object of
that type can assume that it is inherently correct, and thus does not have to do
any error checking of its input.

Decorations As described in Section 2, decorations are very useful in imple-
menting various graph algorithms. There is a number of ways to implement dec-
orations, but to provide a good implementation the following guidelines should
be adhered to: (i.) Decorations should be easy to use. A procedure for identifying
and manipulating a decoration that belongs to a vertex, edge or face of a graph
should be easy and intuitive. (ii.)The number of decorations that can be added
to a graph element (vertex, edge or face) should not be limited, otherwise that
element will not be extensible.

jdsl implements decorations by associating with each element of the graph
a hash table for storing its decorations. This scheme satisfies both conditions,
since any number of decorations can be stored in an element’s hash table, and
accessing decorations requires just a method invocation.

An alternative implementation is used in the leda library [15], which pro-
vides decorations for graphs and planar maps through node-, edge-, and face-
arrays. A node-array stores the decorations for the vertices of a graph in a C++
vector and uses the internal numbering of the vertices to access decorations of
a given vertex. The edge and face arrays are implemented in similar fashion.
This scheme also satisfies both conditions above since creating new decorations
just requires making more vectors, and the mapping between elements and their
decorations is done internally, so that the user can easily access the necessary
decorations.



jdsl’s implementation has one advantage over leda’s — the decorations
and the decorated objects are tightly coupled, which makes it easier to imple-
ment several actions. In the leda implementation, it is difficult to access all
decorations of a given object, since they may be spread out through the entire
implementation of the algorithm. In the jdsl implementation, the Decorable in-
terface provides the method attributes, which returns an enumeration of all the
decorations of that object. Coupling decorations and the decorated objects also
provides more fine grained control over the access to the decorations. In leda

implementation, any object that has access to, e.g., a node-array can modify a
decoration of any vertex. In jdsl implementation in order to access an object’s
decoration, one needs a reference to that object first.

The jdsl system of decorations is not limited to just graph data structures.
Nodes of sequences and trees can also be decorated, which simplifies implemen-
tation of such data structures as red-black trees, where a node’s color can be
stored in a decoration.

GIOTTO Implementation There are currently several other implementations
of giotto, provided as parts of graph drawing packages (see, e.g., [2, 3, 13, 14]).
In this section we compare some of the features of two such implementations,
provided in Graph Drawing Server [3] and GDToolkit [12], with our im-
plementation described in Section 4. We will examine each implementation with
respect to the following criteria. Modularity: How the algorithm is broken up
into subcomponents. Extensibility: How easy it is to make modifications to the
algorithm and extend its functionality. Ease of use: How clearly defined is the
interface through which the algorithm should be used. Use of graph structures:
Which graph structures the implementation uses and how it uses them. Alter-
ations to the input: Several steps of giotto make modifications to the input
graph such as adding edges and vertices which need to be removed in the final
output. We examine how each implementation adds the new elements, keeps
track of them throughout the execution, and removes them.

The Graph Drawing Server [3] is a web-based graph drawing and trans-
lation facility. The user submits a graph in one of a number of formats, selects a
drawing algorithm to be used and specifies an output format with a request to
the server. The implementation of giotto that is part of the server is not meant
for use outside the server, and therefore has several application-specific features.
Modularity: The component breakdown is limited to placing major algorithms
into separate procedures. Extensibility: This particular implementation is hard
to extend, since many of its components were developed specifically for use by
the giotto algorithm and were not meant to be reused for other purposes.
Ease of use: Using the giotto implementation requires calling several functions
corresponding to the steps of the algorithm in order. A unifying function for
giotto algorithm is not provided. Use of graph structures: This implementa-
tion of giotto uses a special data structure to keep track of the graph and other
information. The data structure is highly specific to the implementation. Alter-
ations to the input: Fictitious vertices and edges are added directly to the main
data structure and labeled as such. In the stage when the algorithm computes its



final output, the labels are examined and elements that are labeled as fictitious
simply do not get included in the output.

GDToolkit [12] provides an implementation of several graph drawing algo-
rithms. As a consequence, it has a supporting library of graph data structures,
and also uses several leda components. Although the main purpose of the pack-
age is for displaying graphs, it is developed in such a way as to make it possible
to add new algorithms. Modularity: The library provides several graph struc-
tures, each modeled by a class. The implementation of giotto, however, is not
separated from the graph class that it is applied to. Also, algorithmic subcom-
ponents (such as the minimum cost flow computation) are not separated from
the main giotto implementation. Extensibility: The implementation of giotto

is a private function of the embedded planar graph structure, which means that
extending its functionality, even through inheritance, is not possible. Therefore
it is difficult to use the algorithm for anything other than computing a drawing
and displaying it on the screen. Ease of use: Using the giotto algorithm in
GDToolkit is very easy. To create an orthogonal representation for a given
graph instance, that instance needs to be assigned to an object of type orthog-
onal planar graph. The assignment automatically performs the conversion and
runs the orthogonalization algorithm. Use of graph structures: GDToolkit pro-
vides several graph structures to be used by graph drawing algorithms. One of
the classes is used to model a drawing as a graph which contains information
about the coordinates of its elements and can be drawn in a window. giotto

proceeds by first constructing a drawing object with an unspecified layout, which
is a copy of its input graph and then creating an orthogonal representation for
the drawing. Alterations to the input: This implementation of giotto uses a
marking system similar to the one used in the Graph Drawing Server to in-
dicate fictitious elements. The object that models a drawing provides a method
to remove the fictitious elements that can be called before displaying a graph.

The main function of both the Graph Drawing Server and of GDToolkit

is to apply a variety of drawing algorithms to graphs provided by the user, and
to display the resulting drawing. These packages are not intended to be used as
libraries for programmers who want to develop new algorithm implementations.
As a consequence, many of their components are application-specific and thus
are difficult to reuse outside the package.

The implementation of giotto presented in this paper is intended to be used
in a variety of applications. It is therefore aimed at providing components that
are reusable and can be easily adapted to the required application. Modularity:
Each object and reduction in the implementation of giotto is modeled by a
separate object with a well-defined interface. Algorithms are used as subcom-
ponents of other algorithms by instantiating them, computing the output, and
using the desired accessor methods. Extensibility: giotto and its subcompo-
nents are designed in such a way as to be easily extended for use in various
applications. All algorithms are modeled as objects, which means they can be
extended through inheritance. The template method pattern is used when there
are alternative algorithms for a given action, or when there may be user-defined



actions taken at a given step. Ease of use: Since the giotto algorithm is modeled
by an object, using it just requires creating an instance of that object passing
to it the desired input graph in the constructor. Use of graph structures: Our
implementation of giotto uses the Graph and EmbeddedPlanarGraph interfaces
described in Section 2. Alterations to the input: Our implementation of giotto

does not make any changes to the input data structure, it only adds decorations.
Any alterations that are done to the input are handled by the reduction objects
which have the ability to undo any changes they make.

References

1. R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.
2. P. Bertolazzi, G. Di Battista, and G. Liotta. Parametric graph drawing. IEEE

Trans. Softw. Eng., 21(8):662–673, 1995.
3. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service

on the WWW. In S. C. North, editor, Graph Drawing (Proc. GD ’96), Lecture
Notes Comput. Sci. Springer-Verlag, 1997.

4. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:. Prentice-
Hall, 1998.

5. G. Di Battista, G. Liotta, and F. Vargiu. Diagram Server. J. Visual Lang. Comput.,
6(3):275–298, 1995. (special issue on Graph Visualization, edited by I. F. Cruz and
P. Eades).

6. ffgraph homepage. http://www.fmi.uni-passau.de/∼friedric/ffgraph/main.shtml.
7. B. Flaming. Practical Algorithms in C++. Coriolis Group Book, 1995.
8. G. Gallo and M. G. Scutella. Towards a programming environment for combina-

torial optimization: a case study oriented to max-flow computations. ORSA J.
Computing, 5:120–133, 1994.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

10. N. Gelfand, M. T. Goodrich, and R. Tamassia. Teaching data structure design
patterns. In Proc. 29th ACM SIGCSE Tech. Sympos., pages 331–335, 1998.

11. M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John
Wiley, New York, NY, 1998.

12. GDToolkit homepage. http://www.inf.uniroma3.it/people/gdb/wp12/GDT.html.
13. M. Himsolt. The Graphlet system. Lecture Notes in Computer Science, 1190, 1997.
14. H. Lauer, M. Ettrich, and K. Soukup. GraVis — system demonstration. Lecture

Notes in Computer Science, 1353, 1997.
15. LEDA homepage. http://www.mpi-sb.mpg.de/LEDA/.
16. R. Tamassia. On embedding a graph in the grid with the minimum number of

bends. SIAM J. Comput., 16(3):421–444, 1987.
17. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and read-

ability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.
18. R. Tamassia, L. Vismara, and J. E. Baker. A case study in algorithm engineering

for geometric computing. In G. F. Italiano and S. Orlando, editors, Proc. Workshop
on Algorithm Engineering, 1997. http://www.dsi.unive.it/˜wae97/proceedings/.

19. K. Weihe. Reuse of algorithms: Still a challenge to object-oriented programming.
In Proc. OOPSLA-97, pages 34–48. ACM Press, 1997.


