A Case Study in Algorithm Engineering
for Geometric Computing*!

Roberto Tamassia Luca Vismara
Center for Geometric Computing Center for Geometric Computing
Department of Computer Science Department of Computer Science
Brown University Brown University
Providence, Rhode Island 02912-1910, USA Providence, Rhode Island 02912-1910, USA
rt@cs.brown.edu lv@cs.brown.edu
Abstract

The goal of this paper is to prove the applicability of algorithm engineering and software
design concepts to geometric computing through a vertical case study on the implementation of
planar point location algorithms. The work is presented within the framework of the GEOMLIB
project, aimed at developing an easy to use, reliable, and flexible library of robust and efficient
geometric algorithms. We present the criteria that have inspired the preliminary design of
GEOMLIB and discuss the guidelines that we have followed in the initial implementation.

Keywords: Algorithm engineering, geometric computing, software libraries, point location.

*Research supported in part by the U.S. Army Research Office under grant DAAH04-96-1-0013 and by the
National Science Foundation under grants CCR-9423847, CCR-9732327, and CDA-9703080. Portions of the results
described in this paper were presented at the Workshop on Geometric Computing, Sophia Antipolis, France, 1997,
and at the 1st Workshop on Algorithm Engineering (WAE ’97), Venezia, Italy, 1997.

tThis is a preprint of an article accepted for publication in the International Journal of Computational Geome-
try € Applications ©World Scientific Publishing Company.

mailto:rt@cs.brown.edu
mailto:lv@cs.brown.edu

1 Introduction

This paper overviews the preliminary design of the GEOMLIB library of geometric data structures
and algorithms and presents a case study on the implementation of planar point location algo-
rithms, which illustrates several key aspects of GEOMLIB and its underlying algorithm engineering
principles.

1.1 Goals of GeomlLib

The GEOMLIB project addresses the important objective of developing an easy-to-use, reliable,
and flexible library of robust and efficient geometric algorithms. GEOMLIB is part of a larger
project, named JDSL [36, 39, 40, 41], aimed at constructing a library of data structures and
algorithms using the Java programming language.! In the design of GEOMLIB, we have taken
into account the experience of related efforts, such as the Library of Efficient Data structures and
Algorithms (LEDA) [13, 59, 60, 61] and the more recent Computational Geometry Algorithms
Library (CGAL) [31, 68].
The main goals of the GEOMLIB project are:

e To provide researchers in computational geometry with a framework for algorithm engineer-
ing, with a specific emphasis on geometric computing. In this context, GEOMLIB will be
typically used for rapid prototyping and experimental studies of geometric algorithms.

e To make computational geometry algorithms available to users in major application areas,
such as robotics, geographic information systems, mechanical engineering, and computer
graphics.

Addressing the geometric computing requirements of application areas is a strategic direction
for computational geometry [17, 58, 82]. In particular, the development of libraries of geometric
data structures and algorithms is motivated by the following observations:

e Programming effort is often unnecessarily expended reimplementing fundamental geometric
algorithms.

e Innovative geometric algorithms are often not implemented, because their creators do not have
the interest, the skills, or the resources to accompany the algorithm with an implementation.

e In the implementation of geometric algorithms, important aspects, such as robustness re-
quirements or degeneracy conditions, are often overlooked, with detrimental effects on the
correctness of the results.

1.2 Key Aspects of GeomLib

Object-oriented software design concepts, such as design patterns [35] are extensively used through-
out GEOMLIB. In particular, GEOMLIB defines a collection of interfaces® that describe some fun-
damental data structures used in geometric computing, suitably arranged in hierarchies. For each
interface, different implementations are provided. This enables users to choose the most appropriate
implementation considering efficiency constraints. Users of GEOMLIB are encouraged to develop
algorithms using interfaces rather than specific implementations, thus creating more general code.

"http://www.cs.brown.edu/cgc/jdsl/.
2The term interface is used here to denote the declaration of the methods of a class of objects, and is similar to
the concept of abstract data type.

http://www.cs.brown.edu/cgc/jdsl/

In the design of JDSL/GEOMLIB, the combinatorial, topological, and geometric properties of
geometric objects are accessed through different, increasingly specialized interfaces. For example,
the interface of a planar subdivision specializes that of an embedded planar graph by adding
methods that access geometric information (e.g., the point associated with a vertex and the segment
associated with an edge), and in turn the interface of an embedded planar graph extends the
interface of a graph with methods that access topological information (e.g., the cycle associated
with a face and the clockwise ordering of the edges incident with a vertex). An advantage of this
hierarchical design is that any combinatorial algorithm for graphs and any topological algorithm
for embeddings can be executed directly (without adaptation) on a planar subdivision.

Abstraction is a key technique for handling the increasing complexity of programs. In the
design of GEOMLIB, algorithm abstraction plays a major role. We call algorithm abstraction the
process of implementing algorithms as reusable software objects. It goes beyond both procedural
abstraction (structured programming) and data abstraction (object-oriented programming), by
viewing algorithms as objects that can be manipulated at the programming language level. It
allows the programmer to construct new algorithms by specifying modifications and extensions of
existing ones.

Using algorithm abstraction, one can construct reusable software components that embody al-
gorithmic techniques of common use, such as plane-sweep, lifting map, fractional cascading, and
binary space partition search (discussed in detail in this paper). We call algorithmic pattern the
implementation of a specific algorithmic technique using algorithm abstraction. An algorithmic
pattern provides the implementation of an algorithm template that can be specialized and com-
bined to generate more complex computations. An algorithmic pattern is a refinement of the design
pattern known as template method pattern [35]. Chapter 15 of Ref. [26] overviews several algorith-
mic techniques used in computational geometry that could be usefully implemented as algorithmic
patterns.

A variety of techniques have been designed to make geometric algorithms robust in the presence
of high-precision numerical computations (e.g., involving square roots) and degenerate geometric
configurations (e.g., more than two collinear points or more than three cocircular points) [3, 14, 24,
28,33, 34, 43,47, 48,49, 57,76, 78, 85, 86, 87]. GEOMLIB adopts the paradigm of exact computation
(see, e.g., Refs. [3, 14, 86]) and uses the concept of degree [57] to characterize the arithmetic precision
requirement of a geometric algorithm. Namely, a geometric algorithm of degree d requires in its
computations a precision that is, in the worst case, about d times that of the input data. Since
the arithmetic precision of a computation greatly affects the CPU time necessary to carry it out,
the degree of a geometric algorithm should be considered as important as the asymptotic time
complexity and should correspondingly play a major role in the design, or re-design, of a geometric
algorithm (see, e.g., Refs. [6, 7, 20]).

As any library, GEOMLIB may suffer from a relative inefficiency: providing generality usually
requires an overhead with respect to an ad hoc program to solve a certain problem. As described
before, however, one of the main purposes of GEOMLIB is to provide a framework for rapid pro-
totyping of algorithms, which can then be reimplemented as stand-alone applications, if necessary.
Another possible source of inefficiency arises from the choice of Java as the implementation lan-
guage. Its cross-platform capability comes at the price of a reduced execution speed. However, the
gap in execution speed between a Java program and, say, a C+-+ program is expected to narrow
thanks to the use of second-generation Java virtual machines or high-performance compilers that
produce optimized platform-specific native code.

1.3 A Vertical Case Study on Planar Point Location

We exemplify the main aspects of the design of GEOMLIB through the detailed discussion of a
vertical case study on the design and implementation of an algorithmic pattern that unifies two well-
known techniques for planar point location: the chain method (also known as separator method)
and the trapezoid method. Exploiting the commonalities between these two methods allows us
to reduce the amount of code necessary to implement them, providing a concrete example of fast
prototyping of two complex geometric algorithms.

Planar point location is a fundamental search primitive in computational geometry. The prob-
lem is to preprocess a planar subdivision S with n vertices in order to efficiently support queries
that find the region of S containing a query point. Several efficient point location data structures
have been devised (see, e.g., the surveys [72, 77]). Most of these data structures use a common
scheme, which we call binary space partition search, consisting of: (i) a recursive decomposition
of the planar subdivision by means of separators, which can be atomic geometric objects, such
as segments or horizontal lines, or more complex structures, such as monotone polygonal chains;
(ii) the representation of the decomposition structure by means of a binary tree 7. Each internal
node of T is associated with a portion of S and with a separator. A point location search then
proceeds by traversing a path from the root of T' (associated with the entire subdivision S) down
to a leaf (associated with a region of S) determining, at each visited node p, on which side of the
separator associated with p lies the query point. By balancing the decomposition tree T, efficient
query time can be obtained.

The popular chain method [27, 55] and trapezoid method [71] follow the binary space partition
search scheme. Both techniques are very efficient in practice, as reported in Ref. [25]. Also, by
extending the chain method with fractional cascading, one can obtain a theoretically optimal point
location data structure with O(n) space requirement and O(logn) query time [27].

In this paper, we show how the binary space partition search scheme can be developed into an
algorithmic pattern by implementing within GEOMLIB a reusable software component for planar
point location, and demonstrate how the chain method and trapezoid method can be obtained by
a simple specialization of this component.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 a set of requirements for a geometric
computing library is described. Previous work is discussed in Section 3, where the following ap-
proaches are evaluated with respect to the requirements: non-integrated collections of algorithms,
such as “graphics gems” and “numerical recipes”, specialized libraries for scientific computing, and
completely integrated libraries, such as the Standard Template Library, LEDA, and CGAL. The
preliminary design of JDSL/GEOMLIB is presented in Section 4 through a description of the main
components of the architecture. In Section 5, we analyze our design with respect to the previously
described requirements. The vertical case study is presented in Section 6. Concluding remarks and
plans for the future development of GEOMLIB are summarized in Section 7. Finally, in Appendix A
we recall some object-oriented concepts that are used throughout the paper, in Appendix B we mo-
tivate the choice of Java as the implementation language for the current JDSL/GEOMLIB prototype,
and in Appendix C we give the code fragments for some of the classes defined in Section 6.

2 Requirements for a Geometric Computing Library

In this section, we describe a set of requirements that a library for geometric computing should
satisfy. Many of these requirements apply to any software library, while others are particularly
important for geometric computing.

Ease of Use The library should be easy to use. This requirement depends on various factors that, in
general, differ for different categories of users. We recall some of the most relevant. The num-
ber of concepts used in the library should be minimal and guarantee an adequate functionality.
An appropriate level of abstraction for these concepts is critical in this regard. The naming
scheme adopted for components and operations should be intuitive and consistent throughout
the library. The documentation should be integrated into the library. Knuth pioneered in-
tegration between code and documentation with the concept of “literate programming” (see,
e.g., Ref. [53]). Note that the Java programming language provides this capability as part of
its specification [1]. All this should contribute to a smooth learning curve for the users of the
library.

Efficiency The methodologies and techniques used in the design of the library (abstraction, gener-
ality, object-orientation) should introduce a low overhead with respect to an ad hoc program
to solve a certain problem. Efficiency of algorithms and data structures should not be eval-
uated only through the standard asymptotic analysis measures; constant factors should also
be considered, together with new efficiency measures for geometric algorithms, such as the
precision [10], the degree [57], or the depth of derivation [86, 87].

Flexibility Multiple implementations should be provided for each data structure. Being able to
choose among multiple implementations is a very powerful capability; it gives the possibility
to experiment in order to choose the most appropriate one for a given problem. Of particular
importance, in geometric computing, is the choice of the data types. Possible examples
are the arithmetic representation for geometric objects, or the use of multilevel spatial data
descriptions, providing “zooming” capabilities, in geographical information systems (see, e.g.,
Ref. [83]).

Reliability Although geometric algorithms are easier to express in the real-RAM model, issues such
as robustness or the use of external memory should be addressed by a practical geometric
library. For example, exact arithmetic and support for data structures that efficiently work
with secondary storage should be provided. Another important reliability criterion is the
detailed handling of all inputs, including degenerate ones [31, 75, 82]. Note, however, that a
trade-off exists between reliability and other criteria, in particular efficiency.

Extensibility The architecture of a library should be extensible by the decentralized contributions
of the community of its users, while maintaining evolving standards that enable the contri-
butions to interoperate. The great success of various projects, e.g., the LAPACK library, the
GNU software system, the Unix operating systems, and the Internet (with its Request For
Comments documents), testify the importance of extensibility, especially in the presence of
standards for collaboration.

Reusability Reuse of design and implementation should be maximized, both internally and exter-
nally. By internal reusability we mean that the library uses its own components and programs
to build more complex ones. By external reusability we mean that components of external
libraries should also be used, wherever feasible. Resources are always limited, and many

of the existing libraries are very good. Portability of the implementation language(s) and
extensibility are essential to achieve a high degree of external reuse.

Modularity Some of the most relevant concepts of structured programming are modularity and lay-
ered design, which were introduced in languages like Ada. Large software applications are
divided in loosely coupled modules, usually arranged in layers. More recently the concept of
component has been introduced. Components are not arranged in a strictly hierarchical way,
since not always a true hierarchical relationship exists among them. They allow greater flex-
ibility, avoiding artificial and unnecessary dependencies. Modularity increases reusability and
decreases the cost of reliability. Modular architectures should be contrasted with monolithic
ones.

Functionality The library should provide a significant subset of the existing geometric computing
algorithms. Reusability of existing work and extensibility are crucial for achieving functionality.

Correctness Checking It is a well-known fact that programming is an error-prone task. On the other
hand, program testing cannot guarantee the correctness of a program, and formal proof of
correctness do not seem to be applicable in practice. As a possible solution to this impasse, the
concept of program checking has been recently introduced (see, e.g., Refs. [4, 5, 22, 32, 62].
Rather than proving the correctness of the program for any possible input, each time the
program is run (with a specific input), the correctness of its output (with respect to that
input) is checked. A program checker should satisfy certain requirements: it should be correct
itself, simple, so that its correctness can be established beyond any reasonable doubt, and
efficient, i.e., requiring less resources than the checked program. Program checkers should be
integrated within the library to boost confidence in the algorithm implementations. However,
as noted in Ref. [62], a trade-off exists between correctness checking and other criteria, such as
efficiency and extensibility. Checkers may also provide valuable insight into the corresponding
algorithms, when combined with animation and visualization techniques.

3 Previous Work

Previous related work on algorithm libraries includes the gems/recipes approach, specialized li-
braries, STL, Java Collections and JGL, and the European initiatives LEDA and CGAL. We
evaluate previous work according to the requirements presented in Section 2. For the gems/recipes
approach some of the requirements are not particularly meaningful and we omit them.

3.1 Gems and recipes

“Graphics gems” [2, 38, 46, 52, 69] and “numerical recipes” [73] have proved very useful in computer
graphics and scientific computing, respectively. Through books and available source code, the
gems /recipes approach has disseminated easy to use, efficient, and reliable procedures for computer
graphics and scientific computing to a wide audience.

There are two main objections to this approach as a model for a geometric computing library.
Numerical recipes do not use complex data structures; typically the most complex ones are dense
arrays. In contrast, geometric computing requires substantially more complex data structures. And
because of the relative lack of complexity, users of gems and recipes tend to improve the efficiency
of their applications by directly implementing them without any substantial abstraction. This,
however, is possible only because of the relative simplicity of the gem or recipe to be implemented,

as well as the relative homogeneity of the problem elements. It does not seem applicable to the
conceptually more difficult geometric problems.

The Directory of Computational Geometry Software,” created by Nina Amenta, is a compre-
hensive collection of “gems” in the area of geometric computing. An example of excellent program
from that collection is the widely used Qhull, by Barber, Dobkin, and Huhdanpaa.

3

3.2 Specialized Libraries

A wide variety of specialized libraries exist for scientific computing, operations research, and other
domains. Each library is specialized in one particular type of problems, e.g., linear algebra, linear
programming, fluid dynamics, stress analysis, or molecular biology. Specialized libraries are widely
used, invaluable, and often quite expensive. They provide functionality for their specific domain; this
implies that they are often very efficient and reliable with respect to that domain. They are generally
easy to use, as they match the expectations of the users. Proprietary libraries, by their nature, do
not provide extensibility, but a number of specialized libraries are collaboratively developed and
are extensible to some extent. See, e.g., BLAS and LAPACK available from the Netlib repository.*
Almost all large libraries provide some degree of correctness checking, through a validation suite,
and of flexibility.

These libraries, however, are heavily specialized. Reuse is generally limited when they are used
outside of their domain, because of interoperation difficulties. (Interoperation requires a spectrum
of standards, ranging from the conceptual level to the implementation level.) Many lack modularity,
as typical for libraries written in Fortran.

Some small specialized libraries have been written for computational geometry, usually accom-
panying introductory textbooks (see e.g., Refs. [54, 67]). They are typically easy to use, but lack
functionality.

3.3 STL, Java Collections, and JGL

The Standard Template Library [65, 70], or STL, is a C++ library of containers, iterators, algo-
rithms, and function objects. It is part of the C++ ISO standard, and various implementations are
available. The STL is a generic library, meaning that its components are heavily parameterized:
almost every component in the STL is a template.” STL provides many basic data structures, such
as vectors, lists, sets, maps, hash tables, and priority queues, collectively referred to as contain-
ers. It also includes a large collection of algorithms that manipulate the data stored in containers.
According to the principles of generic programming, algorithms are decoupled from the container
classes they operate on; they are not methods of container classes, but rather global methods. The
decoupling of algorithms from containers is made possible by iterators. Iterators are a generaliza-
tion of pointers, and, as the name suggests, are often used to iterate over a range of objects: if an
iterator points to one element in a range, then it is possible to increment (decrement) it so that it
points to the next (previous) element. Iterators are central to generic programming because they
are an interface between containers and algorithms: algorithms typically take iterators as template
arguments, so a container need only provide a way to access its elements using iterators. This
makes it possible to write generic algorithms that operate on many different kinds of containers.

3http://www.geom.umn.edu/software/cglist/.

‘http://www.netlib.org/.

5 Templates are a code generation mechanism of the C++ programming language that allows the definition of
functions and classes to be parameterized with respect to one or more data types. For example, a set template class
can be defined with the notation template <class T> class Set, and later specialized to a set of integers class with
the notation Set<int>.

http://www.geom.umn.edu/software/cglist/
http://www.netlib.org/

Ease of Use Users of STL may need some time to fully take advantage of the generic programming
principles on which the library is based. The inclusion of the library in the C4++ standard,
however, will result in a wider dissemination of these principles.

Efficiency In the design of STL, particular care has been taken as to the efficiency of the various
operations and algorithms.

Flexibility The template mechanism on which STL is based provides a high degree of flexibility,
especially when combined with the use of function objects.

Modularity STL has a flat design, not organized in architectural modules. The distinction of the
various components of the library in containers, iterators, algorithms, and function objects is
more conceptual than architectural.

Functionality STL provides many basic data structures and algorithms. It does not contain, how-
ever, more complex data structures such as trees, graphs, and planar subdivisions.

Two libraries similar to STL have been designed for Java, namely the java.util package of
the Java Development Kit (JDK) by Sun [79], informally referred to as Java Collections, and the
Generic Collection Library for Java (JGL) by ObjectSpace [66]. They both provide containers and
iterators; JGL also provides algorithms and function objects. Similar considerations to those made
for STL apply for these two libraries.

3.4 LEDA

LEDA [60, 61], the Library of Efficient Data Structures and Algorithms,® was not designed with
the exclusive goal of supporting geometric computing. However, this is one of its principal uses
and the focus of much of the continuing research activity [13, 59].

Ease of Use LEDA’s data structures and algorithms are well documented with respect to their space
and time complexity. Of particular importance for the ease of use of LEDA is the textbook-
like look and feel of the code, written following the “literate programming” approach. Every
new release is accompanied by a detailed user manual.

Efficiency Most of the implemented algorithms are asymptotically optimal. Altogether, LEDA is
moderately efficient; for a particularly complex data structure as the graph, a factor of 4
performance loss is claimed with respect to an ad hoc implementation. LEDA provides its
own efficient memory manager. Independent item types (i.e., items that are not part of
a collection data type), such as points, lines, and segments, are implemented using smart
pointers with reference counting capabilities (see Items 28-29 of Ref. [63]), called handle
types (see Chapter 13 of Ref. [61] for details); this guarantees efficient assignment, copy, and
destruction operations, and identity testing.

Flexibility Most data types in LEDA are parameterized with respect to the type of their elements by
means of the template mechanism. Some limitations’ of the template mechanism are nicely

Shttp://www.mpi-sb.mpg.de/LEDA/.

"Although powerful and elegant, the template mechanism presents also some drawbacks. For each template
class instantiation with a different parameter type, the code of the class is duplicated; this increases code size
and compilation time. Template classes cannot be precompiled and organized in a library to be later linked to an
application; rather, they have to be included in the application and compiled with it. Finally, the template mechanism
does not allow collections of heterogeneous elements.

http://www.mpi-sb.mpg.de/LEDA/

avoided in LEDA: each parameterized data type is realized by a pair of classes, a class for the
abstract data type (or interface) and one for the data structure (or implementation). Only
the former, whose size is usually quite small, uses the template mechanism (see Chapter 13
of Ref. [61] for details). The same mechanism is also adopted to let the user select one of
the multiple possible implementations for an abstract data type. For example, there exist
implementations of a priority queue as a Fibonacci heap, a pairing heap, a k-nary heap,
a monotonic heap, and a van Emde Boas tree. It is even possible to add a user-written
implementation, as long as it conforms to the interface of a priority queue.

This degree of flexibility is less available for the far more complex data structures used in
computational geometry, because of the inherent limitations of the template mechanism when
dealing with complex modeling relationships. Points in the geometric kernel can be of two
types: real point approximations, using Cartesian coordinates, or exact rational points, using
homogeneous coordinates; it is not possible to choose a different representation for the points,
if desired. Also, for each geometric test, the computation performed for its evaluation is fixed.
As an example, we consider testing the vertical position of a point with respect to a line. This
test usually requires the computation of the sign of a determinant. However, as discussed in
Section 6.6, there are cases in which this predicate can be evaluated in a more efficient way.

Reliability Multiple types of arithmetic, such as arbitrary length integer numbers, rational numbers,
and algebraic real numbers, are available, and allow exact computations with different degrees
of efficiency. In particular, algebraic real numbers [13, 15], thanks to the use of an arithmetic
filter, are the most powerful and usually more efficient arithmetic type provided by LEDA.
Different types of arithmetic cannot currently coexist in geometric data structures.

Extensibility LEDA has proven to be extensible from the user community. A large number of special-
ized packages written by users for tasks like map labeling, visibility algorithms, and location
problems are available. The LEDA Extension Packages framework has been recently added
to integrate extensions of the core system.

Reusability LEDA practices internal reuse extensively. Basic data structures (sequences, priority
queues, dictionaries, and union-find structures) are reused, as components of more sophisti-
cated ones. External reuse is more limited, perhaps because of portability concerns.

Modularity LEDA has evolved from an initial flat design to a modular one. Currently, four large
modules can be identified: basic data types (including dictionaries and priority queues),
graphs and related algorithms, a geometric kernel, and a visualization support module. The
geometric kernel [59] is based on a layered design: it is composed by an arithmetic layer, a
linear algebra layer, and a geometric layer.

Functionality LEDA implements an impressive collection of data structures and algorithms.

Correctness Checking Pioneering work on correctness checkers has been done within LEDA [32, 62].

3.5 CGAL

CGAL and LEDA are separate but complementary initiatives. CGAL [31, 68], the Computational
Geometry Algorithms Library,® is an initiative involving seven research centers and funded by
the European Community. CGAL is still work in progress, but various versions have already been

Shttp://www.cs.uu.nl/CGAL/.

http://www.cs.uu.nl/CGAL/

released. It consists of three parts: the kernel, which contains primitive geometric objects, the basic
library, which contains basic geometric data structures and algorithms; and the support library,
which contains non-geometric support facilities.

Ease of Use A large number of concepts from STL are used in CGAL. This provides a smooth
learning curve for new users already familiar with that library. Only a few non-geometric
additional concepts are introduced in CGAL, and a new user can start working without
knowing all advanced techniques and concepts, such as circulators, creator function objects,
or classes for composing function objects. A detailed on-line documentation is available at
the CGAL web site. The naming conventions have been designed very carefully. The support
library provides, among others, I/O support for interfacing CGAL with various visualization
tools.

Efficiency As in LEDA, implementations of many asymptotically optimal geometric algorithms
are provided. Sometimes multiple versions of an algorithm are supplied, where a faster
version is obtained, for instance, by ignoring degeneracies. The user is allowed to specify the
type of arithmetic used for representing primitive geometric objects, so that computationally
expensive exact arithmetic is used only where actually needed. This is obtained through the
C++ template mechanism.

Flexibility The current CGAL kernel provides two families of implementations of the basic geometric
objects: one based on a representation of points by Cartesian coordinates, and the other
based on a representation of points by homogeneous coordinates. The CGAL kernel is also
open in terms of type of arithmetic used: by a template parameter, the user can specify
the number type of the coordinates. Possible choices include C++ primitive number types
(int, long, float, and double), LEDA number types (e.g., arbitrary length integer numbers
and algebraic real numbers), GNU Multiple Precision Arithmetic Library [42] number types,
CGAL interval arithmetic number types, and even user-provided number types.

Of particular importance, in the CGAL implementation of geometric algorithms, is the use
of traits classes. All types and geometric primitives necessary for a certain algorithm are
encapsulated in a traits class, which is then passed as a template argument to the algorithm.
The algorithm can thus be implemented independently from the particular representation
chosen for the geometric objects and from the computation performed for evaluating the
geometric primitives.

Reliability Exact geometric computations can be guaranteed, if needed, by properly choosing the
type of representation and the number type for basic geometric objects. Two particularly
interesting choices [11], in this respect, are the Cartesian coordinates with LEDA algebraic
real numbers, and the homogeneous coordinates with LEDA arbitrary length integer numbers.

Extensibility A certain degree of extensibility is present, as shown by the possibility of importing
arithmetic types. Further, the generic programming paradigm adopted in the implementation
and the compliance with STL should facilitate the integration of external contributions into
the library.

Modularity CGAL is organized into four large modular units: a core library of basic non-geometric
functionalities; a geometric kernel containing constant-size geometric objects (such as points,
lines, segments, triangles, and tetrahedra) and predicates on them; a basic library of more
complex geometric objects, data structures, and algorithms; and a support library. Geometric

objects are not part of a hierarchy, but are rather organized in independent packages. The
interoperation between the basic library and the geometric kernel is based on the use of the
traits classes described above.

Functionality CGAL contains a large collection of 2D and 3D geometric objects and data structures,
and various geometric algorithm implementations.

Correctness Checking A sophisticated system of on demand checks and warnings, based on pre-
and post-conditions, has been implemented for the kernel methods and the basic library
algorithms.

4 The Preliminary Design of JDSL/GeomLib

The goal of this paper is to prove the applicability of some advanced software design concepts
to geometric computing through a vertical case study rather than to describe the design of a
comprehensive geometric computing library. Thus, in this section, we review only those aspects of
the preliminary design of JDSL/GEOMLIB that are relevant to the case study presented in Section 6.
The JDSL/GEOMLIB project is described in greater detail in Refs. [36, 39, 40, 41].

Our design relies on various object-oriented design concepts, such as object, class, interface,
inheritance, polymorphism, dynamic binding, and design pattern. We briefly review them in Ap-
pendix A, and refer the interested reader to, e.g., Refs. [16, 35, 80, 84]. Of particular importance
in the design of JDSL/GEOMLIB is the concept of interface. Ideally, users of JDSL/GEOMLIB use
interfaces rather than classes as object types; actual classes need only be specified when creating
an object. And if the abstract factory design pattern [35] is implemented, also the creation of an
object takes place through an interface. Interfaces are general, while classes are specialized: thus,
using interfaces instead of specific classes creates more general code, allowing different classes,
implementing the same interface, to be used interchangeably. In our design, we have exploited
multiple interface inheritance and single class inheritance, thus taking advantage of the flexibility
provided by the former and, at the same time, avoiding the well-known problems of multiple class
inheritance.

A significative result of the analysis performed for the case study is the convenience of having
multiple views of the same geometric object. In fact, a geometric object can be described at
different levels of abstraction, considering its combinatorial, topological, and geometric properties
separately. In our design, these properties are made accessible through different interfaces. We will
use the geometric object planar subdivision as an example, and show how the different interfaces
it implements (directly or through inheritance) correspond to different possible views.

The architecture of JDSL/GEOMLIB is partitioned into four different components, namely the
combinatorial, the topological, the geometric, and the arithmetic components. In particular, GE-
OMLIB consists of the geometric and the arithmetic components. In our Java implementation, each
component corresponds to one or more Java packages.” Each package consists of a collection of
interfaces, and for each interface a reference implementation is or will be provided. The interfaces
are arranged in hierarchies that may extend across different packages or components. Note that
the design of JDSL/GEOMLIB does not directly depend on Java; its validity extends to C++ and
other object-oriented programming languages. The choice of Java as the implementation language
for the current JDSL prototype is motivated in Appendix B. In the rest of this section we present

9A Java package provides modularity by defining the name spaces for interfaces, classes, and objects; this modu-
larity is also used to encapsulate entities within a package through name access controls.

10

a high-level view of the four components of JDSL. As said above, their full description is beyond
the scope of this paper.

4.1 The Combinatorial Component

In this component, many fundamental data structures used in combinatorial algorithms are defined
and implemented. A recent trend in the study of fundamental data structures is to present them
under a general framework. In fact, most of them can be viewed as containers that store a collection
of heterogeneous objects, called the elements of the container [41, 65, 70]. The combinatorial
component is further divided into two subcomponents, one for the basic data structures and one
for the combinatorial graph.

4.1.1 The basic data structures subcomponent

In this subcomponent, most of the basic data structures are defined and implemented. Containers
can be roughly divided into two categories: positional containers and key-based containers. Typical
positional containers are sequences, trees, and graphs; typical key-based containers are priority
queues and dictionaries. The common properties of the constituents of a positional container are
abstracted in the concept of position. Considering a sequence as an example, a position models
both a node of a linked list implementation and an array entry of an array-based implementation.
Each position stores an element of the container, and, given a position, it is possible to access
its element and its container in constant time. Positions are fixed in a positional container, while
elements can be moved from one position to another (as an example, we can imagine an element
that is moved from the first to the last position of a sequence). On the other hand, the concept of
position is not inherent in key-based containers, although each key-based container is, at the very
end, implemented using a positional container (e.g., a binary tree used to implement a dictionary).
A different mechanism, called locator, is used to access a specific (key,element) pair in a key-based
container in constant time; its description, however, is beyond the scope of this paper. A high-level
view of the interface hierarchy for the basic data structures subcomponent is shown in Figure 1. The
actual implementation contains two parallel interface hierarchies, since each basic data structure
interface in Figure 1 corresponds to two interfaces: one for the immutable version of the data
structure (whose name is prefixed by Inspectable) and the other, extending the first, for the
mutable version.

The basic data structures subcomponent corresponds to the jdsl.core.api, jdsl.core.ref,
and jdsl.core.algo packages of JDSL. Some of the most relevant interfaces for our case study
are the following:

Container This interface describes a generic collection of heterogeneous objects and is the common
root of the container hierarchy. It provides basic methods such as size(), returning the
number of elements in the container, elements (), returning an enumeration of the elements
in the container, and isEmpty ().

Position This interface describes the concept of position of a positional container (e.g., a node
of a tree, or a vertex of a graph). The two main methods are element (), returning the
element stored in the position, and container (), returning the container to which the position
belongs.

PositionalContainer This interface extends the Container interface and is the common parent
of the Sequence, CircularSequence, BinaryTree, and Graph interfaces. It provides meth-

11

(1de wouy)
101ed07
<<9oBAU|>>

(1de wouy)
uonisod
<<9oBAU|>>

(ide wouy)
a|qelo0dag
<<92elRdU|>>

(1de wouy)
Joresedwod
<<dJepAU|>>

(1de wouy)

Areuonoigpalapio
<<9delBU|>>

(ide wouy)

ydelo
<<dJepau|>>

(ide wouy)
9ai] Areuig
<<doelau|>>

(1de wouy)
aouanbasenaiD
<<adelR_>>

(ide wouy)
aouanbag
<<ddeudu|>>

(ide wouy)
Areuonoig
<<dJelaU|>>

(1de wouy)
ananpOAliold
<<dJepaU|>>

JaureluoDeuonisod
<<dJeau|>>

(ide wouy)

(ide wouy)
Jaurejuod
<<3JeLIBIU|>>

Jaureluoppaseghay
<<doRUBIUI>>

(ide wouy)

Figure 1: A high-level view of the interface hierarchy for the basic data structures subcomponent

of JDSL.

12

ods such as positions(), returning an enumeration of the positions in the container and
replace(Position,0bject), replacing the element stored in the position with a new object.

Sequence This interface describes a sequence and provides methods such as before (Position)
and after(Position), returning the positions before and after a given position, first ()
and last (), returning the first and last positions of the sequence, insertAfter (Position,
Object), inserting a new position storing an object after a given position, and removeAfter
(Position), removing the position after a given one. An implementation of the Sequence
interface is used in the preprocessing of the case study.

BinaryTree This interface describes a binary tree and provides methods such as leftChild
(Position) and rightChild(Position), returning the left and right child of a given node,
cut (Position), removing the subtree rooted at a given node, and link(Position,
BinaryTree), adding a subtree at a given leaf. An implementation of the BinaryTree inter-
face is extensively used as a search structure in the case study.

Decorable This interface is used to implement the decorator design pattern [35]. The motivation
of this pattern is to attach additional, named attributes to individual objects rather than
to an entire class. In our case the type of the objects we want to decorate is Position,
which suitably extends Decorable. Typically, an attribute is a temporary piece of informa-
tion, necessary for some specific computation (e.g., marking as visited a vertex of a graph,
or associating a weight to the nodes of a tree). The interface provides methods such as
set(Object,0bject) and get(Object) for setting and getting the value of an attribute,
has(Object) for testing the existence of an attribute, and destroy(0Object) for removing it.

JDSL provides various classes implementing the above interfaces, and these classes are often
internally reused in the implementation of more advanced data structures. Note, however, that any
class implementing one of the above interfaces, either directly or through a wrapper class, could
be used in place of the JDSL classes. Alternative implementations of the above interfaces can
also be used as auxiliary data structures; for instance, if a sequence is used as an auxiliary data
structure in the implementation of an algorithm, class LinkedList from the java.util package
of Sun’s Java Development Kit (JDK), or class D1ist from the com.objectspace.jgl package
of ObjectSpace’s Generic Collection Library for Java (JGL) can be used as alternatives to JDSL
classes NodeSequence and ArraySequence.

4.1.2 The graph subcomponent

In this subcomponent, the graph interface and some auxiliary interfaces are defined and imple-
mented. The graph interface describes a graph as a combinatorial object, i.e., simply as a set of
elements and a binary relationship on this set. It inherits from the positional container interface
in the basic data structures subcomponent and is further extended in the topological component.
A high-level view of the interface hierarchy for the graph subcomponent is shown in Figure 2; its
detailed description is beyond the scope of this paper.

The graph subcomponent corresponds to the jdsl.graph.api, jdsl.graph.ref, and jdsl.
graph.algo packages of JDSL. Some of the most relevant interfaces for our case study are the
following;:

Vertex, Edge These interfaces extend the Position interface. They provide no additional method
but are used as “typing” interfaces, allowing a stronger type checking, e.g., when used as
method parameters.

13

(ide wouy)
aoe-
<<dJelL_u|>>

(1de wouy)

abp3
<<dlelLu|>>

(1de wouy)
PENEYN
<<ddel_u|>>

v

(ide wouy)
uonisod
<<@delsu|>>

uone|nbuel | Aeunejag
<<adelau|>>

weiBeiqIouoIon
<<doBBIU|>>

uoisinpgnseue|d

<<ddieldu>>

dzydeiowoan
<<dJelAU|>>

Qazelgowoss
<<Jel_u>>

(ide wouy)

(ide wouy)
ydeioreue|dpappaqui3

<<{Jel_dU[>>

(ide wouy)

ydeiopalapio
<<doBAU|>>

(ide wouy)

ydeio
<<dJeualu|>>

(ide wouy)
JaurejuoDjeuonisod

<<30Rau|>>

Figure 2: A high-level view of the interface hierarchy for the graph subcomponent, the topological

component, and the advanced geometric subcomponent of JDSL.

14

Graph This interface describes a combinatorial graph. It provides methods such as numVertices(),
returning the number of vertices of the graph, degree(Vertex), returning the degree of a
vertex, incidentEdges (Vertex), returning the edges incident with a vertex, origin(Edge)
and destination(Edge), returning the origin and the destination of a directed edge, and
insertEdge (Vertex,Vertex,Object) inserting an edge storing an object between two ver-
tices. The methods from this interface are inherited by the PlanarSubdivision interface and
are used in the preprocessing of the case study.

As an example of internal reuse of code, the existing implementation of the Graph interface uses
a class implementing the Sequence interface to represent its adjacency lists. Note that since the
Sequence implementation is used only through the interface methods, any Sequence implementa-
tion can be used, without having to change the Graph implementation.

4.2 The Topological Component

In this component, the ordered graph interface, the embedded planar graph interface, and an
auxiliary interface are defined and implemented. The ordered graph interface describes a graph
as a topological object, i.e., as a combinatorial graph with the additional information about the
ordering of the edges around the vertices. Accordingly, the ordered graph interface inherits from
the graph interface. An embedded planar graph is a planar ordered graph where the additional
information about the ordering of the edges around the vertices is the one given by an embedding
of the graph in the plane. Accordingly, the embedded planar graph interface inherits from the
ordered graph interface. It is further extended in the geometric component. A high-level view of
the interface hierarchy for the topological component is shown in Figure 2; its detailed description
is beyond the scope of this paper.

The topological component corresponds to the jdsl.map.api, jdsl.map.ref, and jdsl.map.
algo packages of JDSL. Some of the most relevant interfaces for our case study are the following:

OrderedGraph This interface describes a topological graph and extends Graph. Its main additional
methods are prevIncidentEdge (Vertex,Edge) and nextIncidentEdge (Vertex,Edge), re-
turning the edge before or after an edge around a vertex. The methods from this interface
are inherited by the PlanarSubdivision interface and are used in the preprocessing of the
case study.

Face This interface extends Position, and, like Vertex and Edge, is used as a “typing” interface.

EmbeddedPlanarGraph This interface extends OrderedGraph. It provides additional methods such
as numFaces (), returning the number of faces of the graph, incidentEdges (Face), returning
the edges incident with a face, leftFace(Edge) and rightFace(Edge), returning the face to
the left or to the right of a directed edge, and dual (), returning the topological dual embedded
planar graph. The methods from this interface are inherited by the PlanarSubdivision
interface and are used in the preprocessing of the case study.

There exist several possible representations for an embedded planar graph, such as the DCEL
representation, originally presented in Ref. [64] and later refined (see, e.g., Ref. [21]), the quad-edge
representation [44], and the dynamic representations described in Refs. [29, 30, 81]. Each represen-
tation presents advantages and disadvantages, and some may be more suitable than others for a
specific application. For instance, in applications in which the embedded planar graph is frequently
subject to insertions and deletions of vertices and edges, it is important to be able to efficiently up-
date the representation. For some other applications it may be important to easily access the dual

15

graph. Geographical information systems require representations specifically designed for efficient
secondary storage access or for multilevel/multiresolution access (see, e.g., Ref. [83]).

The JDSL implementation of the EmbeddedPlanarGraph interface is based on the incidence
graph representation described in Chapter 11 of Ref. [26]. The embedded planar graph G is rep-
resented through a graph G’ such that: (i) each vertex of G’ corresponds to either a vertex, or
an edge, or a face of G; (ii) each vertex of G’ corresponding to an edge e of G has four adjacent
vertices that correspond to the endvertices and to the incident faces of e in GG. The incidence graph
representation has the nice property that it represents an embedded planar graph and its topolog-
ical dual at the same time. As an example of internal reuse of code, the existing implementation
of the EmbeddedPlanarGraph interface uses an implementation of the OrderedGraph interface to
represent the incidence graph.

4.3 The Geometric Component

This component forms, with the arithmetic component, the GEOMLIB part of JDSL. It is further
divided into two subcomponents, one for the basic geometric objects and one for the advanced
geometric objects and algorithms.

4.3.1 The basic geometric objects subcomponent

In this subcomponent, basic geometric objects, such as points, lines, rays, segments, circles, etc.,
are defined and implemented. Currently, interfaces have been defined and implementations have
been provided only for two-dimensional basic geometric objects. The interface hierarchy for the
basic geometric objects subcomponent is shown in Figure 3.

This subcomponent corresponds to the jdsl.geomobj.api and jdsl.geomobj. ref packages
of JDSL. Some of the most relevant interfaces are the following:

GeomObject This is the interface from which all the other geometric interfaces inherit. Its only
method is dim(), returning the dimension of the geometric object. It is extended by the
“typing” interfaces GeomObject2D and GeomObject3D.

Point2D This interface describes a two-dimensional point. Its only two methods are x() and y (),
returning a double approximation of the point coordinates.

LinearCurve2D This interface describes a linear curve, i.e., (a portion of) a straight line. It ex-
tends OpenCurve2D and is further extended by interfaces Line2D, Ray2D, and Segment2D. It
provides methods such as points (), returning its two defining points, isHorizontal (), and
isVertical(Q).

GeomTester2D This interface is a collection of various two-dimensional geometric tests. Some of
the most relevant methods are aboveBelow(Point2D,LinearCurve2D), testing whether the
point is above, on, or below the linear curve, leftRight (Point2D,LinearCurve2D), testing
whether the point is to the left, on, or to the right of the linear curve, aboveBelow(Point2D,
Point2D), testing whether the first point is above, on, or below the second one, leftRight
(Point2D,Point2D), testing whether the first point is to the left, on, or to the right of the
second one, leftRightTurn(Point2D,Point2D,Point2D), testing whether the three points
form a left turn, a right turn, or are collinear, and insideOutside(Point2D,Circle2D),
testing whether the point is inside, on, or outside the circle.

16

<<Interface>>

GeomObject
(from api)
<<Interface>> <<Interface>>
GeomObject2D GeomObject3D
(from api)
<<Interface>> <<Interface>> <<Interface>> <<Interface>>
Point2D Direction2D Curve2D GeomGraph2D
(from api) (from api) (from api)

<<Interface>>
OpenCurve2D
(from api)

<<Interface>>
ClosedCurve2D

(from api)

<<Interface>>
LinearCurve2D

<<Interface>>
Circle2D

<<Interface>>
Polygon2D

(from api)

(from api)

Line2D
(from api)

<<Interface>>

<<Interface>>
Ray2D
(from api)

<<Interface>>
GeomTester2D
(from api)

<<Interface>>
Segment2D
(from api)

<<Interface>>

GeomConstructor2D
(from api)

17

<<Interface>>
GeomSelector2D
(from api)

Figure 3: The interface hierarchy for the basic geometric objects subcomponent of JDSL.

For many interfaces of this subcomponent, various implementations are possible, according to
which representation is chosen for the basic geometric objects. If we consider a point, for instance,
we can represent its coordinates as integer numbers, exact rational numbers, or real number ap-
proximations; and if we choose rational numbers, it may be convenient to adopt homogeneous
coordinates rather than Cartesian coordinates. Also, it may be useful to have the possibility of
choosing other representations for the basic geometric objects, differing not only for the type of
arithmetic used, as shown in Section 6.6.

We have grouped all the usual geometric tests and constructions in two interfaces in order to
have their implementations localized, thus making their update easier should a new representation
of a basic geometric object be added to the library. Ideally, geometric programs should never access
directly the geometric information of the objects they manipulate, except for visualization purposes.
All the geometric tests and constructions should be performed invoking the appropriate methods
of the geometric tester and constructor interfaces. The important consequence of this approach
is that the geometric program is completely independent from the representation chosen for the
geometric objects and does not have to be modified if such representation changes. Provided that

// compute the anchor point and remove it from hull together with all the coincident points
private static void anchorPointSearchAndRemove () {
while (pe.hasMoreElements()) {
Position pos = (Position)pe.nextElement();
Point2D p = (Point2D)pos.element();
int aboveBelow = geomTester.aboveBelow(p,anchorPoint);
int leftRight = geomTester.leftRight(p,anchorPoint);
if (aboveBelow == GeomTester2D.BELOW | |
aboveBelow == GeomTester2D.ON && leftRight == GeomTester2D.LEFT) {
anchor = pos;
anchorPoint = p;
}
else
if (aboveBelow == GeomTester2D.ON && leftRight == GeomTester2D.ON)
hull.remove(pos);

}

hull.remove(anchor);

}

// Graham’s scan

private static void scan() {
do {

Position next = hull.after(curr);

Point2D prevPoint = (Point2D)prev.element/();

Point2D currPoint = (Point2D)curr.element();

Point2D nextPoint = (Point2D)next.element();

if (geomTester.leftRight Turn(prevPoint,currPoint,nextPoint) == GeomTester2D.LEFT_TURN)
prev = curr;
else {

hull.remove(curr);
prev = hull.before(prev);

curr = hull.after(prev);

while ('hull.isLast(curr));

}

Code Fragment 1: A portion of the GEOMLIB implementation of the Graham’s scan algorithm.

18

the results of the tests and constructions are correct for the chosen representation, the program will
return correct results. This, of course, does not solve the crucial problem of how to guarantee the
correctness of the results of the geometric tests and constructions. We will discuss this fundamental
issue in Section 4.4.

As a simple example of the above concepts, we present in Code Fragment 1 a portion of
the GEOMLIB implementation of the Graham’s scan algorithm for the two-dimensional convex
hull problem (see Chapter 15 of Ref. [41] for the complete implementation). The purpose of the
two code fragments is to illustrate how, in the auxiliary methods called from the main method,
the geometric information of the points is never accessed directly. Objects of type Point2D
are passed as actual parameters to methods of interface GeomTester2D. For instance, method
anchorPointSearchAndRemove () computes the anchor point, i.e., the bottommost and leftmost
point of the set, and removes it from the set together with all its coincident points. To test whether
a point is below the current anchor point, or at the same y-coordinate and to its left, methods
aboveBelow(Point2D,Point2D) and leftRight (Point2D,Point2D) of GeomTester2D are used.
Similarly, in method scan(), which scans the sequence of points previously sorted by polar angle,
method leftRightTurn(Point2D,Point2D,Point2D) of GeomTester2D is used to test whether
three consecutive points form a left turn. Each of these methods is implemented as a two-step
procedure: determine of what classes implementing Point2D the parameters are an instance, and
execute the code corresponding to that combination of classes. It is only in the implementation of
the test methods that the geometric information of the parameters is accessed. The implementation
of the Graham’s scan algorithm, being written only in terms of interfaces, can safely ignore what
classes implementing Point2D are actually used. In the implementation of the algorithm, all pos-
sible inputs are considered, including degenerate ones, such as collinear points or points coincident
with the anchor point.

4.3.2 The advanced geometric subcomponent

In this subcomponent, the two-dimensional geometric graph interface and the planar subdivision
interface are defined. A two-dimensional geometric graph is a graph whose vertices and edges
have some geometric information associated with them, such as a two-dimensional point for each
vertex and a two-dimensional curve for each edge. Accordingly, the two-dimensional geometric
graph interface inherits from both the graph interface and the two-dimensional geometric object
interface. A planar subdivision is a two-dimensional geometric graph in which the underlying
graph is an embedded planar graph, the two-dimensional curves associated with the edges are
pairwise non-intersecting, and the faces are mapped to two-dimensional (typically closed) curves.
Accordingly, the planar subdivision inherits from both the embedded planar graph interface and
the two-dimensional geometric graph interface. A high-level view of the interface hierarchy for the
advanced geometric subcomponent is shown in Figure 2; its detailed description is beyond the scope
of this paper.

This subcomponent corresponds to the jdsl.geom.api, jdsl.geom.ref, and jdsl.geom.algo
packages of JDSL. Some of the most relevant interfaces are the following:

GeomGraph2D This interface describes a two-dimensional geometric graph and extends both Graph
and GeomObject2D. Its main additional methods are geomObject2D(Vertex) and
geomObject2D (Edge), returning the two-dimensional geometric object associated with a ver-
tex or an edge, respectively.

PlanarSubdivision This interface describes a planar subdivision and extends both
EmbeddedPlanarGraph and GeomGraph2D. Its main additional method is geomObject2D

19

(Face), returning the two-dimensional geometric object associated with a face. An instance
of a class implementing the PlanarSubdivision interface is passed as input to the prepro-
cessing algorithm of the case study.

The planar subdivision is a good example of the advantages of the interface inheritance mech-
anism. Through interface multiple inheritance, the same implementation of the planar subdivision
presents different views: a simple container, ignoring the combinatorial, topological, and geometric
information; a combinatorial or topological graph, ignoring the associated geometric information;
a two-dimensional geometric graph, ignoring the topological information; or the combination of
a topological graph and a two-dimensional geometric graph. Thus, since the planar subdivision
can be viewed as a combinatorial graph, the algorithms defined for a combinatorial graph in the
jdsl.graph.algo package of JDSL (e.g., the topological sorting algorithm) can be directly applied
to the planar subdivision, as done in the preprocessing of the case study.

4.4 The Arithmetic Component

In Section 4.3.1, we have seen how the encapsulation of the geometric information within the basic
geometric objects allows the implementation of a geometric algorithm to be independent from the
arithmetic used. However, the problem of the correctness of the arithmetic computations has to be
considered, as indicated, e.g., in Refs. [3, 14, 24, 28, 33, 34, 43, 47, 48, 49, 57, 76, 78, 85, 86, 87].
The assumption of real number arithmetic has proved unrealistic, since digital computers do not
exhibit such capability natively, i.e., in hardware. On the other hand, exact rational arithmetic
via software may excessively slow down computations. In light of these problems, the equivalent
concepts of precision [10], degree [57], and depth of derivation [86, 87] of a geometric algorithm
have been recently introduced. Informally, the degree of a geometric algorithm characterizes, up
to a small additive constant, the arithmetic precision, i.e., the number of bits, required by the
geometric algorithm. Namely, a geometric algorithm of degree d requires in its computations a
precision that is, in the worst case, about d times that of the input data. Since the degree of a
geometric algorithm expresses worst-case computational requirements occurring in degenerate or
near-degenerate instances, special attention must be devoted to the development of a methodology
that reliably computes the sign of the algebraic expression corresponding to a geometric test, with
the least expenditure of computational resources. This involves the use of arithmetic filters [9, 12,
23, 34, 51]. possibly families of filters of progressively increasing power, that, depending upon the
values of the test variables, carefully adjust the computational effort, as done for the algebraic real
number arithmetic type in LEDA. We plan to implement arithmetic filters in the near future.

5 Design Evaluation

It is too early to judge our prototype against the requirements presented in Section 2, but we can
evaluate the preliminary design:

Ease of use GEOMLIB interfaces are designed to be easy to use. We have tried to keep the number
of methods for each interface low. In the choice of the method names we have preferred clarity
to brevity.

Efficiency For each interface, different implementations are or will be provided. This will allow the
users to choose the most appropriate one considering their efficiency constraints. For dynamic
data structures, for instance, the user will be able to choose among different implementations
presenting the usual trade-offs between query and update time.

20

A possible source of inefficiency arises from the choice of Java as the implementation language.
Its cross-platform capability comes at the price of a reduced execution speed. However,
in the near future the difference in execution speed between a Java program and, say, a
C++ program should become acceptable thanks to the use of second-generation Java virtual
machines or high-performance compilers that produce optimized platform-specific native code
(see also Appendix B).

Flexibility In Section 4.3, we have described how the interface inheritance mechanism allows the
users of GEOMLIB to choose the most appropriate representations for the geometric objects
of a given problem, without having to modify the geometric program itself. An example of
use of this capability is shown in Section 6.6. In addition, GEOMLIB supports heterogeneous
representations for the various geometric objects used in the same program.

Reliability GEOMLIB will guarantee robust geometric computing, through the use of both exact
rational arithmetic and floating-point arithmetic with arithmetic filters. Also, particular
attention will be placed, in the implementation of the algorithms, to handling all inputs,
including the degenerate ones.

Extensibility The interface mechanism and the component-oriented design of GEOMLIB allow users
to develop their own implementation of an existing interface and guarantee its interoperability
with the rest of the library. At the same time, users will be able to add new interfaces and
components.

Reusability We plan to maximize the internal reuse of code (two examples of internal reuse of code
have been described in Sections 4.1.2 and 4.2) to rapidly achieve a high level of functionality,
even though this may to some extent reduce efficiency.

Modularity The architecture of JDSL/GEOMLIB consists of a number of interrelated components.
Combinatorial, topological, and geometric components describe properties of geometric ob-
jects at different levels of abstraction. The independence of the components (their orthogo-
nality) is enforced by allowing them to interact only through a well-specified set of primitives.

Functionality Currently, there exists a preliminary prototype implementation of JDSL/GEOMLIB,
consisting of the combinatorial and topological components, and of a subset of the geometric
component, including all the interfaces and classes necessary for the vertical case study de-
scribed in Section 6. This should be contrasted with the much more advanced status of LEDA
and CGAL. Our intention is to extend the implementation of GEOMLIB, possibly considering
other case studies in different areas of computational geometry.

Correctness Checking Currently, GEOMLIB does not contain correctness checkers, but will incorpo-
rate them in the near future in order to enhance reliability.

6 Point Location: A Vertical Case Study

In this section, we show how the binary space partition search algorithmic pattern provides a
unifying framework for the implementation of two major techniques for planar point location: the
chain method [27, 55] and the trapezoid method [71]. Both methods are very efficient in practice, as
reported in Ref. [25]. We provide a concrete example of the use of GEOMLIB and of the application
of algorithm engineering techniques to the implementation of geometric algorithms. We show how

21

the use of the above algorithmic pattern within GEOMLIB supports the fast prototyping of robust
and reliable data structures for point location.

Planar point location is a fundamental search operation in computational geometry, and has
been the target of substantial research. Surveys on methods for planar point location are presented
in Refs. [72, 77]. We briefly recall the problem statement. Let S be a planar subdivision, with edges
mapped to straight-line segments. S induces a partition of the Euclidean plane into a collection
of elementary regions: open polygons (associated with the faces of S), open segments (associated
with the edges of S), and points (associated with the vertices of S). Given a query point ¢, we
wish to determine which elementary region contains ¢. In the repetitive mode of operation, we can
efficiently perform queries by preprocessing S into a suitable search structure. In the rest of the
section, we denote by n the number of vertices of S.

For concreteness, we will describe the binary space partition search algorithmic pattern through
its specialization to the chain method. Then, we will show how the same algorithmic pattern can be
specialized to the trapezoid method. Throughout the section, we use the Unified Modeling Language
(UML) formalism [8, 50, 74] to represent the conceptual models of the algorithmic pattern.

As for many algorithms in the combinatorial component of JDSL, these two point location algo-
rithms are implemented as algorithm objects, following the strategy design pattern [35]. In particu-
lar, we have defined an interface PointLocation, whose only method is query(Point2D), and two
classes, ChainMethod and TrapezoidMethod, implementing that interface (see Figure 4). An object
of type PlanarSubdivision (an interface defined in the geometric component of JDSL/GEOMLIB)
is passed as a parameter to the constructors of the two classes, which are responsible for the
preprocessing.

<<Interface>>
PointLocation

(from api)
+ query()
/ \
ChainMethod TrapezoidMethod
(from ref) (from ref)
+ ChainMethod() + TrapezoidMethod()
+ query() + query()

Figure 4: The conceptual model of the point location algorithm interface and classes. Dashed
segments connect classes to the interfaces they implement.

6.1 Review of the Chain Method

In this section, we consider the chain method for planar point location by Lee and Preparata [55].
In particular, we focus on its variant described in Chapter 11 of Ref. [26]. We recall that the
search structure requires O(n) space, can be constructed in O(nlogn) time, and allows queries in
O(log®n) time.

The planar subdivision S is assumed to be monotone, i.e., such that, for each face of S, its
intersection with any horizontal line is connected. Note, however, that horizontal edges are allowed.
The separators used to recursively decompose subdivision S are monotone chains of vertices and
edges of S, called for brevity chains. As described in Section 1.3, the recursive decomposition of S
is represented by means of a binary tree T'. Each node of T is thus associated with a chain of S,

22

and each leaf node is associated with a face of S. In the preprocessing phase, the chains are chosen
so that they leave about half of the regions to the left, and half to the right. Hence, tree T' has
logarithmic height.

Although an edge of S may belong to several chains, it is stored only once at the highest node of
T where it appears, in order to keep the space requirement linear. Hence, chains may have “gaps”
corresponding to edges that are not actually stored. In order to deal with “gaps”, faces and chains
are labeled with consecutive integers, and stored in 1" so that their labels appear consecutively in
the inorder traversal of T

A query for a point ¢ consists of traversing a downward path in 7" starting at the root. At each
internal node p, point ¢ is “discriminated” against the chain associated with pu:

1. If ¢ is to the left of the chain, the search continues on the left child of pu.
2. If g is to the right of the chain, the search continues on the right child of pu.

3. If ¢ is on a vertex or edge of the chain, the search terminates and that vertex or edge is
returned.

Thus, if ¢ is contained in a face f of S, the search terminates at the leaf of T" associated with f,
while if ¢ is on a vertex or edge of S, the search terminates at the first internal node whose
chain contains ¢. Also, during the search, the range of the labels of the faces and chains that are
candidates for containing ¢ is maintained.

The discrimination of point ¢ against a chain consists of:

1. Determining the component of the chain that is horizontally in front of ¢; this component is
either a vertex, or an edge, or a subchain of horizontal edges.

2. Testing whether ¢ is to the left of the component, to the right of the component, or on (a
vertex or edge of) the component. This is done by means of a geometric left/right test if the
component is explicitly stored and by using the label of the chain and the current label range
if the component is on a “gap” of the chain.

6.2 The Binary Space Partition Search Algorithmic Pattern

The design of the binary space partition search algorithmic pattern is based on the concepts of
search region and separator, characterized by the following properties:

e A search region is recursively decomposed by means of separators.

e In the discrimination step, the separator itself may be a search region in a lower-dimensional
space.

The basic operation in the search algorithm is the discrimination of the query point against the
separator of the current region, i.e., testing whether the query point is on one side or the other of
the separator, or on the separator itself. According to the result of the discrimination, a new search
region (a subregion of the current one) is searched. Eventually, the new search region will be an
elementary region and the search will terminate. The discrimination of the query point against a
separator may require a single geometric test, or may require a secondary point location process in
the separator and the discrimination against the result.

In the chain method, the separators of the plane search region are chains, the elementary regions
are faces, and the search structure representing the recursive decomposition is called separator tree.

23

Ve

‘puajxo Aot} Sosse[oY)

0} S9SSE[D 400UU0D SHUWIFas prjos pue ‘yuowoidulr £} S9ORJIOIUL Y} 0F SOSSB[D }09UU0D SJUOUITIS

poyse(‘uwreljed oruyjrIose yoress uonrpred sords Areurq o) Jo ppowr [engdoduod oy T, :G oIngIg

SeparableRegion
(from ref)
+ SeparableRegion()
+ toString()
+ locate()

Region
(from api)

<<Interface>>

+ locate()
pvd

FaceRegion
(from ref)

+ FaceRegion()

SeparatorSeparableRegion
(from ref)

(from ref)

AbstractRegion

AbstractRegion()
+ toString()

/v + locate()

ﬂ\

HorEdgeRegion

(from ref)

+ HorEdgeRegion()

+ SeparatorSeparableRegion()
+ whichSide()

EdgeRegion VertexRegion HorLine Horlnterval
(from ref) (from ref) (from ref) (from ref)
+ EdgeRegion() + VertexRegion() + HorLine() + Horlnterval()
+ whichSide() + whichSide() + whichSide() + whichSide()
\
A | / s
‘ e
~ e
~ - ‘ e
e
~
- \Q | /
7 <<Interface>>
Separator
(from api)
+ whichSide()

The separators of a chain search region are horizontal lines, the elementary regions are edges, and
the search structure representing the recursive decomposition is called chain tree; each horizontal
line corresponds to a vertex or a horizontal subchain. The separators of a horizontal subchain
search region are vertices, the elementary regions are horizontal edges, and the search structure
representing the recursive decomposition is called horizontal subchain tree.

Using the above concepts, the search algorithm can be modeled as an algorithmic pattern, called
binary space partition search, characterized by the interaction of objects of the following types:

Region The object in which the query point is searched.

Separator The object against which the query point is discriminated. Note that a separator is a
region.

Search Status The object that provides the next region to be searched, based on the result of the
discrimination of the query point against the separator of the current region.

Note how in the binary space partition search algorithmic pattern, the structural properties
of the search regions are kept separate from the data structures used to represent their recursive
decomposition. In particular, each data structure is encapsulated in the corresponding search
status. This design decision is critical in allowing us to implement different point location methods
as specializations of a common algorithmic pattern.

<<Interface>> <<Interface>>
PointLocStatus DiscrimResult
(from api) (from api)
+ nextRegion() + side()

A + region()

AbstractPointLocStatus |

(from ref) DiscrimResultimpl
AbstractPointLocStatus() (from ref)
+ nextRegion() + DiscrimResultimpl()
reset() + side()
negativeRegion() + region()
onRegion() 9
positiveRegion()
BasicPointLocStatus CMPlanePointLocStatus

(from ref) (from ref)

+ BasicPointLocStatus() + CMPlanePointLocStatus()

reset() # reset()

negativeRegion() # negativeRegion()

positiveRegion() # positiveRegion()

- descend()

Figure 6: The conceptual model of the binary space partition search algorithmic pattern (con-
tinued). Dashed segments connect classes to the interfaces they implement, and solid segments
connect classes to the classes they extend.

25

The conceptual model of the binary space partition search algorithmic pattern is shown in
Figures 5 and 6. We have captured the main aspects of the algorithmic pattern in the four following
Java interfaces.'’

Region (see Code Fragment 2) This interface describes a region in which the location is performed.
Its only method is locate(Point2D), returning the face, edge, or vertex region containing
the query point.

Separator (see Code Fragment 2) This interface describes the separator of a separable region. Its
only method is whichSide (Point2D), returning the result of the discrimination of the query
point against this.

DiscrimResult (see Code Fragment 2) This interface describes the result of the discrimination
of the query point against a separator. Its two methods are side(), returning the side of
the separator containing the query point, and region(), returning the region acting as a
separator in the discrimination.

PointLocStatus (see Code Fragment 2) This interface describes a search status, which keeps
track of the status of the search in a separable region. Its only method is nextRegion
(DiscrimResult), returning the region in which to continue the search.

These interfaces are implemented by the following classes, two of which abstract.'! In this
section we present the code for the most relevant ones, while the code for the remaining ones is
given in Appendix C.

SeparableRegion (see Code Fragment 3) implementing interface Region. This class describes a
region that is divided by a separator. In particular, it is used to model a recursive decompo-
sition of the plane and of a horizontal subchain. Note how an extensive use of recursion and
polymorphism allows us to reduce the number of conditional control statements used in our
code. The query method locate () can be expressed in a very compact way. The two instance
variables separator_ and status_ store a reference to the separator and to the search status
of the object, respectively.

SeparatorSeparableRegion (see Code Fragment 3) extending class SeparableRegion and imple-
menting interface Separator. It is used to model a recursive decomposition of a chain, and,
as such, a separator of the plane. Its only additional method is whichSide () of interface
Separator. Note how this method is implemented similarly to method locate() of class
SeparableRegion.

AbstractPointLocStatus (see Code Fragment 4) implementing interface PointLocStatus. It
is used to maintain the status in the search structure associated with a separable region.
Method nextRegion(DiscrimResult) is implemented by invoking one of the three methods
negativeRegion(Region), onRegion(Region), positiveRegion(Region), based on the re-
sult of the discrimination of the query point against the current separator. The first and
last of these methods are declared abstract and are implemented by the two subclasses
BasicPointLocStatus and CMPlanePointLocStatus.

10A Java interface consists of a set of methods declared with their parameter types, return type, and exceptions
thrown; it may also contain a set of constants. Interfaces can participate in multiple inheritance, and one of their
main uses is for typing purposes.

YA Java abstract class is a partially implemented class that is extended by other classes; it cannot be instantiated.
Its purpose is to factor out some common features of its subclasses to avoid code duplication.

26

/**

* A region in which the location of a query point can be performed
Y/
public interface Region {
Vs
* @param q the query point
* @return the subregion of this containing q
Y/
public Region locate (Point2D q);

* ok

* The separator of a separable region
Y/

public interface Separator {

Vs
* @param q the query point
* @return whether q is on the GeomTester2D.NEGATIVE side of this,
* GeomTester2D.ON this, or on the GeomTester2D.POSITIVE side of this
Y/

public DiscrimResult whichSide (Point2D q);

Vs
* The result of the discrimination of the query point with respect to the separator
¥/

public interface DiscrimResult {

Vs
* @return the side of the separator containing the query point
Y/

public int side ();
*k
* @return the region acting as a separator in the discrimination
Y/

public Region region ();

*k
* The status of a point location search
Y/

public interface PointLocStatus {

Vs
* @param dr the result of the discrimination of the query point against the current separator
* @return the next region according to the result of the discrimination of the query point
* against the current separator
Y/

public Region nextRegion (DiscrimResult dr);

Code Fragment 2: Interfaces Region, Separator, DiscrimResult, and PointLocStatus.

27

public class SeparableRegion implements Region {
// instance variable(s)
protected Separator separator_;
protected PointLocStatus status_;
protected String label_;
// constructor(s)

public SeparableRegion (Separator separator, PointLocStatus status) {

separator_ = separator;
status_ = status;
label. = "";

}

// instance method(s) from Region

public Region locate (Point2D q) {
Region r = status_.nextRegion(separator_.whichSide(q));
return r.locate(q);

}

// instance method(s) from java.lang.Object

public String toString () {
return label_;

}

public class SeparatorSeparableRegion extends SeparableRegion implements Separator {
// constructor(s)

public SeparatorSeparableRegion (Separator separator, PointLocStatus status) {
super (separator,status);

// instance method(s)

public DiscrimResult whichSide (Point2D q) {
Separator s = (Separator)status_.nextRegion(separator_.whichSide(q));
return s.whichSide(q);

}

Code Fragment 3: Classes SeparableRegion and SeparatorSeparableRegion.

BasicPointLocStatus (see Code Fragment 5) extending class AbstractPointLocStatus. It is
used to maintain the status in the search structure associated with a chain or a horizontal
subchain. Note that the descent along the search tree takes place in methods negativeRegion
(Region) and positiveRegion (Region).

CMPlanePointLocStatus (see Code Fragment 6) extending class AbstractPointLocStatus. It is
used to maintain the status in the search structure associated with the plane. We recall
that it may not be necessary to discriminate the query point against some chains, namely
those that have a “gap” at the ordinate of the query point (see Chapter 11 of Ref. [26] for
details). It follows that the descent mechanism in the separator tree is different from that

28

public abstract class AbstractPointLocStatus implements PointLocStatus {
// instance variable(s)

protected BinaryTree tree_;
protected Position current_;

// constructor(s)

protected AbstractPointLocStatus (BinaryTree tree) {
tree. = tree;

}

// instance method(s)

public Region nextRegion (DiscrimResult dr) {
Region region;
switch (dr.side()) {
case GeomTester2D. NEGATIVE:
region = negativeRegion(dr.region());
if (tree_.isExternal(current_))
reset();
break;
case GeomTester2D.ON:
region = onRegion(dr.region());
reset();
break;
case GeomTester2D.POSITIVE:
default:
region = positiveRegion(dr.region());
if (tree_.isExternal(current_))
reset();
}

return region;

}

protected abstract void reset ();

Vs
* @return the next region when the result of the discrimination is GeomTester2D.NEGATIVE
Y/

protected abstract Region negativeRegion (Region r);

Vs
* @return the next region when the result of the discrimination is GeomTester2D.ON
*/

protected Region onRegion (Region r) {
return r;

}
Vasi

* @return the next region when the result of the discrimination is GeomTester2D.POSITIVE
Y/

protected abstract Region positiveRegion (Region r);

Code Fragment 4: Abstract class AbstractPointLocStatus.

29

public class BasicPointLocStatus extends AbstractPointLocStatus {
// constructor(s)

public BasicPointLocStatus (BinaryTree tree) {
super(tree);
reset();

}

// instance method(s)

protected void reset () {
current_ = tree_.root();

}

protected Region negativeRegion (Region r) {
current_ = tree_.leftChild(current._);
return (Region)current_.element();

}

protected Region positiveRegion (Region r) {
current_ = tree_.rightChild(current_);
return (Region)current_.clement();

}

Code Fragment 5: Class BasicPointLocStatus.

in the chain tree and in the horizontal subchain tree; hence, the different implementation of
methods negativeRegion(Region) and positiveRegion(Region).

AbstractRegion (see Code Fragment 7) extending class HashtableDecorable and implementing
interface Region. Class HashtableDecorable is defined in the jdsl.core.ref package of
JDSL and implements the Decorable interface (see Section 4.1.1); thus, all the subclasses of
AbstractRegion can be decorated.

FaceRegion (see Code Fragment 7) extending class AbstractRegion. It models a face of the planar
subdivision.

HorEdgeRegion (see Code Fragment 7) extending class AbstractRegion. It models a horizontal
edge of the planar subdivision. At the same time, it acts as one of the components of a
horizontal subchain.

EdgeRegion (see Code Fragment 8) extending class AbstractRegion and implementing interface
Separator. It models an edge of the planar subdivision. At the same time, it acts as one of
the components of a chain.

VertexRegion (see Code Fragment 8) extending class AbstractRegion and implementing interface
Separator. It models a vertex of the planar subdivision. At the same time, it acts as one of
the components of a chain, and as a separator for a horizontal subchain.

HorLine (see Code Fragment 9) extending class AbstractRegion and implementing interface Separator.
It models a horizontal line passing through a vertex or through a horizontal subchain of the
planar subdivision. At the same time, it acts as a separator for a chain. If the query point
is on the horizontal line, the region returned as part of the discrimination result is either a

30

public class CMPlanePointLocStatus extends AbstractPointLocStatus {
// instance variable(s)

protected int initialMinFaceNum_;
protected int initialMaxFaceNum_;
protected int minFaceNum_;
protected int maxFaceNum_;
protected Object CHAIN_NUMBER_;
protected Object LEFT_FACE_TSN_;
protected Object RIGHT_FACE_TSN_;

// constructor(s)

public CMPlanePointLocStatus (BinaryTree tree, int initialMinFaceNum, int initialMaxFaceNum,
Object CHAIN_NUMBER, Object LEFT_FACE_TSN, Object RIGHT_FACE_TSN) {

super(tree);
initialMinFaceNum_ = initialMinFaceNum;
initialMaxFaceNum_ = initialMaxFaceNum;

CHAIN_NUMBER.- = CHAIN_NUMBER;
LEFT_FACE_TSN_ = LEFT_FACE_TSN;
RIGHT_FACE_TSN_ = RIGHT_FACE_TSN;
reset();

}

// instance method(s)

protected void reset () {

current_ = tree_.root();
minFaceNum_ = initialMinFaceNum_;
maxFaceNum_ = initialMaxFaceNum_;

}

protected Region negativeRegion (Region r) {
Object lfn = ((AbstractRegion)r).get(LEFT_FACE_TSN._);
maxFaceNum_ = ((Integer)lfn).intValue();
descend();
return (Region)current_.element();

}

protected Region positiveRegion (Region r) {
Object rfn = ((AbstractRegion)r).get(RIGHT_FACE_TSN.);
minFaceNum_ = ((Integer)rfn).intValue();
descend();
return (Region)current_.element();

}

private void descend () {
while (tree_.isInternal(current_)) {
int cn = ((Integer)current_.get(CHAIN_NUMBER.)).intValue();
if (cn > maxFaceNum_)
current_ = tree_.leftChild(current_);
else if (cn <= minFaceNum_)
current_ = tree_.rightChild(current_);
else
break;

Code Fragment 6: Class CMPlanePointLocStatus.

31

VertexRegion, modeling the corresponding vertex, or a HorInterval, modeling the span of
a horizontal subchain.

DiscrimResultImpl (see Code Fragment 9) implementing interface DiscrimResult.

HorInterval (see Code Fragment 10) extending class AbstractRegion and implementing inter-
face Separator. It models the (possibly open) horizontal interval spanned by a horizontal
subchain of the planar subdivision. At the same time, it acts as one of the components of a
chain. If the query point is within the interval, two cases are possible: (i) the query point is
coincident with one of the two endpoints of the interval; then the region returned as part of
the discrimination result is a VertexRegion, modeling the corresponding vertex; (ii) other-
wise, the region returned as part of the discrimination result is a SeparableRegion, modeling
a recursive decomposition of the corresponding horizontal subchain.

We now describe in some detail how the various regions are arranged in the search structures.
In the implementation of the separator tree, of the chain trees, and of the horizontal subchain trees,
we make use of class NodeBinaryTree, implementing interface BinaryTree, from the combinatorial
component of JDSL.

e For the recursive decomposition of each horizontal subchain, we use a NodeBinaryTree object
to represent the corresponding horizontal subchain tree. Each leaf of the tree corresponds
to either an edge or to a “gap” of the horizontal subchain; in the former case it stores a
HorEdgeRegion object, in the latter the value null. Each internal node of the tree stores a
SeparableRegion object. The separator of this SeparableRegion is a VertexRegion object,
referenced by the instance variable separator_. The status of a horizontal subchain tree
search structure is maintained by a BasicPointLocStatus object, referenced by the instance
variable status_ of the SeparableRegion objects stored in the internal nodes of the tree.

e Fach HorInterval object stores in its instance variable onRegion_ a reference to the
SeparableRegion object stored in the root of the NodeBinaryTree representing the cor-
responding horizontal subchain tree.

e For the recursive decomposition of each chain, we use a NodeBinaryTree object to rep-
resent the corresponding chain tree. Each leaf of the tree may correspond to an edge or
to a “gap” of the chain; in the former case it stores an EdgeRegion object, in the lat-
ter the value null. FEach internal node of the tree stores a SeparatorSeparableRegion
object. The separator of this SeparatorSeparableRegion is a HorLine object, referenced
by the instance variable separator_. The status of a chain tree search structure is main-
tained by a BasicPointLocStatus object, referenced by the instance variable status_ of the
SeparatorSeparableRegion objects stored in the internal nodes of the tree.

e Each HorLine stores in its instance variable onRegion_ a reference to the region used as a
separator for the (horizontal) discrimination of the query point against the chain, if the query
point is on the HorLine. This region is either a VertexRegion or a HorInterval.

e For the recursive decomposition of the plane, we use a NodeBinaryTree object to rep-
resent the corresponding separator tree. Each leaf of the tree stores a FaceRegion ob-
ject, while each internal node stores a SeparableRegion object. The separator of this
SeparableRegion is a SeparatorSeparableRegion object, referenced by the instance vari-
able separator_; more precisely, it is the SeparatorSeparableRegion object stored in the

32

root of the NodeBinaryTree representing the corresponding chain tree. The status of the sep-
arator tree search structure is maintained by a CMPlanePointLocStatus object, referenced
by the instance variable status_ of the SeparableRegion objects stored in the internal nodes
of the tree.

6.3 Interaction between Components

In this section, we describe how the various components of the binary space partition search interact
with one another. The key methods of the point location query algorithm are the recursive method
locate(Point2D) of class SeparableRegion and method nextRegion(DiscrimResult) of class
AbstractPointLocStatus. It is through their interplay that the location of the elementary region
containing the query point proceeds.

The process begins by invoking method locate(Point2D) on the SeparableRegion stored in
the root of the separator tree. The query point is discriminated against the separator by invoking
method whichSide(Point2D) on the object referenced by variable separator_ (we will see the
details of the implementation of this method later). From the above described arrangement of the
various regions in the search structures, we know that this object is the SeparatorSeparableRegion
stored in the root of a chain tree. The result of the discrimination is passed as a parameter when
method nextRegion(DiscrimResult) is invoked on the CMPlanePointLocStatus object associated
with the separator tree and referenced by variable status_. The region returned by this method
depends on the position of the query point with respect to the separator. If the point is on
the positive or negative side of the separator, then we descend along the separator tree, and the

SeparableRegion

nextRegion L :

> FaceRegion

SeparableRegion
EdgeRegion

[J
VertexRegion

@
SeparableRegion

Figure 7: The possible objects returned by method nextRegion(DiscrimResult) when invoked
by a SeparableRegion modeling the recursive decomposition of the plane.

33

SeparatorSeparableRegion

— nextRegion
—_—
) EdgeRegion
SeparatorSeparableRegion
[J
VertexRegion
—
HorInterval

Figure 8: The possible objects returned by method nextRegion(DiscrimResult) when invoked
by a SeparatorSeparableRegion modeling the recursive decomposition of a chain.

region returned is either a new SeparableRegion or a FaceRegion (if we reach a leaf of the tree).
Otherwise, the query point is on the separator, and the region returned is either an EdgeRegion,
or a VertexRegion, or a SeparableRegion modeling the recursive decomposition of a horizontal
subchain. See the schematic representation in Figure 7. In both cases, method locate (Point2D)
is recursively invoked on the returned region.

The implementation of method whichSide (Point2D) of class SeparatorSeparableRegion is
similar to that of method locate(Point2D) of class SeparableRegion. When this method is
invoked on the SeparatorSeparableRegion stored in the root of a chain tree, the object referenced
by variable separator_is a HorLine. The result of the discrimination is passed as a parameter when
method nextRegion(DiscrimResult) is invoked on the BasicPointLocStatus object associated
with the chain tree and referenced by variable status_. If the point is on the positive or negative
side of the separator, then we descend along the chain tree, and the region returned is either a new
SeparatorSeparableRegion or an EdgeRegion (if we reach a leaf of the tree). Otherwise, the query
point is on the separator, and the region returned is either a VertexRegion or a HorInterval. See
the schematic representation in Figure 8. In both cases, method whichSide (Point2D) is recursively
invoked on the returned separator.

We have seen above that the location process may advance through the invocation of method
locate(Point2D) on the SeparableRegion stored in the root of a horizontal subchain tree. Dif-
ferently from the SeparableRegion objects stored in the nodes of the separator tree, in this case
the object referenced by variable separator_ is a VertexRegion. The result of the discrimi-
nation is passed as a parameter when method nextRegion(DiscrimResult) is invoked on the
BasicPointLocStatus object associated with the horizontal subchain tree and referenced by vari-
able status_. If the point is on the positive or negative side of the separator, then we descend
along the horizontal subchain tree, and the region returned is either a new SeparableRegion or
a HorEdgeRegion (if we reach a leaf of the tree). Otherwise, the query point is on the separator,
and the region returned is a VertexRegion. See the schematic representation in Figure 9. In both
cases, method locate(Point2D) is recursively invoked on the returned region.

What differentiates classes BasicPointLocStatus and CMPlanePointLocStatus are methods

34

SeparableRegion
L nextRegion .
SeparableRegion > HorEdgeRegion
[
VertexRegion

Figure 9: The possible objects returned by method nextRegion(DiscrimResult) when invoked
by a SeparableRegion modeling the recursive decomposition of a horizontal subchain.

negativeRegion(Region) and positiveRegion(Region). While their implementation in class
BasicPointLocStatus is quite intuitive, their implementation in class CMPlanePointLocStatus
requires some comments. In the preprocessing of the chain method (see Chapter 11 of Ref. [26] for
details), the [faces of the planar subdivision are numbered from 0 to [—1, according to a topological
sorting of the vertices of the directed dual planar subdivision. The chains are numbered from 1 to
I —1, and chain ¢ satisfies the following property: faces 0 to ¢ — 1 are to its left, and faces i to [— 1
are to its right. During a query, the interval I of faces possibly containing the query point narrows
down after each discrimination of the query point against a chain. In particular, we have seen that
the discrimination of the query point against a chain eventually results in the discrimination of
the query point against a component s (either an edge, or a vertex, or a horizontal interval) of the
chain. If the query point is to the left of s, then the upper value of I is set to the number of the
face to the left of s in the planar subdivision. Similarly, if the query point is to the right of s, then
the lower value of I is set to the number of the face to the right of s in the planar subdivision.
Since discriminating the query point against chains whose number is outside I does not provide
any additional information, we can suitably descend along the separator tree until we reach either
a leaf or a node whose corresponding chain number is within I. (Note that chains whose number
is outside I would present a “gap” at the ordinate of the query point.)

To this purpose, in the preprocessing we decorate each node of the separator tree with the num-
ber of the corresponding chain, and each EdgeRegion, VertexRegion and HorInterval with the
number of its left and right face in the planar subdivision. The keys used for these decorations are
passed as parameters to the constructor of class CMPlanePointLocStatus, and stored in variables
CHAIN_NUMBER_, LEFT_FACE_TSN_, and RIGHT_FACE_TSN_, respectively. The lower and upper values
of interval I are stored in variables minFaceNum_ and maxFaceNum_, respectively. The descent along
the separator tree avoiding unnecessary discriminations is implemented in method descend().

As for method reset (), implemented by BasicPointLocStatus and CMPlanePointLocStatus,
its purpose is to reset the status of the search structure for a new query, when the current query is
completed.

Note how the only classes in the design that interact with the geometric component of JDSL/
GEOMLIB are VertexRegion, EdgeRegion, HorLine, and HorInterval. In particular, method
whichSide(Point2D) from interface Separator is the only one that accesses the geometry of the
planar subdivision. For an object of class HorLine, the associated basic geometric object against
which the query point is discriminated is of type Point2D, and the (vertical) discrimination is
performed through method aboveBelow(Point2D,Point2D) of interface GeomTester2D. For an
object of class EdgeRegion, the associated basic geometric object is of type LinearCurve2D, and the
(horizontal) discrimination is performed through method leftRight (Point2D, LinearCurve2D)
of interface GeomTester2D. For an object of class VertexRegion or HorInterval, the associated

35

basic geometric objects are of type Point2D, and the (horizontal) discrimination is performed
through method leftRight (Point2D, Point2D) of interface GeomTester2D.

6.4 The Trapezoid Method

In this section, we review another planar point location algorithm, the trapezoid method of Prepara-
ta [71], and show how it can be obtained by a simple specialization of the same algorithmic pattern
used for the chain method. We recall that, in the trapezoid method, the search structure requires
O(nlogn) space, can be constructed in O(nlogn) time, and allows queries in O(logn) time.

In the trapezoid method, the search region is recursively decomposed into simpler regions, called
trapezoids, by means of two types of separators: horizontal lines and edges of the planar subdivision.
Again, the basic operation of the search algorithm is the discrimination of the query point against
the current separator.

The binary space partition search is a correct abstraction for the trapezoid method, as well.
This method can be implemented using a subset of the classes described in Section 6.2, namely
SeparableRegion, BasicPointLocStatus, FaceRegion, EdgeRegion, VertexRegion, HorLine,
and DiscrimResultImpl. While in the chain method the separator of a SeparableRegion is
either a SeparatorSeparableRegion or a VertexRegion, in the trapezoid method, it is either a
HorLine, or an EdgeRegion, or a VertexRegion. Thanks to the use of interfaces as object types,
and since all these classes implement the Separator interface, the implementation of the methods
of SeparableRegion need not be changed.

In principle, one could even consider a mixed recursive decomposition of the search region:
up to a certain level, it could be decomposed, say, using chains, as in the chain method; then, it
could be decomposed using horizontal lines and edges, as in the trapezoid method. Note, however,
that, even though the query algorithms for the chain method and the trapezoid method can both
be modeled through the same algorithmic pattern, the preprocessing algorithms are considerably
different, and thus have separate implementations.

6.5 Optimal Chain Method

The chain method has been refined to optimality by Edelsbrunner, Guibas, and Stolfi [27], using
fractional cascading [18, 19]. We recall that, in the optimal chain method, the search structure
requires O(n) space, can be constructed in O(n) time, and allows queries in O(logn) time.

We can implement also the optimal chain method within the binary space partition search
algorithmic pattern described in the previous sections. The main modification required is the
implementation of a new class FCPointLocStatus implementing interface PointLocStatus. Its
(only) instance will maintain the status of the fractional cascading search structure associated with
the chains, called layered DAG in Ref. [27]. Thus, it will play for the optimal chain method the
same role played for the chain method by the (many) BasicPointLocStatus objects maintaining
the status of the chain trees.

We are currently experimenting with two alternative designs for FCPointLocStatus. In the first
design, FCPointLocStatus stores a single instance of class IncidenceListGraph, implementing
interface Graph. In the second design, it stores a suitably linked collection of instances of a class
implementing interface OrderedDictionary. All the aforementioned interfaces and classes are part
of the combinatorial component of JDSL.

36

6.6 Test Primitives in Voronoi Diagrams

In Section 6.1, we have shown that, for the binary space partition search algorithmic pattern,
basic geometric objects are accessed only through methods of interface GeomTester2D, namely
aboveBelow(Point2D,Point2D), leftRight(Point2D,Point2D), and leftRight(Point2D,
LinearCurve2D). In this section, we show how this design choice ensures high flexibility. In par-
ticular, we focus our attention on method leftRight (Point2D,LinearCurve2D) when the planar
subdivision is a Voronoi diagram. First, we briefly review the technique presented in Ref. [57] for
performing proximity queries with optimal degree (a measure of the worst-case arithmetic preci-
sion requirement, see Section 4.4), and then show how this technique is fully supported by the
architecture of GEOMLIB.

We assume that the coordinates of the input sites for the construction of the Voronoi dia-
gram are b-bit integers. In a straightforward implementation of a point location algorithm, the
vertices of the Voronoi diagram are computed and explicitly stored as rational numbers with ho-
mogeneous coordinates (z,y,w), where z and y are 3b-bit integers, and w is a 2b-bit integer. As
shown in Ref. [57], this implies that the discrimination of the query point against an edge (method
leftRight (Point2D,LinearCurve2D) of interface GeomTester2D) has degree 6.

The alternative approach proposed in Ref. [57] uses a different representation of the diagram,
called implicit Voronoi diagram, which consists of a topological component and a geometric compo-
nent. The topological component is the underlying embedded planar graph of the Voronoi diagram.
The geometric component includes for each non-horizontal edge e of the diagram, the two sites [(e)
and r(e) such that the perpendicular bisector of [(e) and r(e) is the underlying line of e, and I(e)
is to the left of r(e). With this representation, performing the discrimination of the query point
against edge e only requires the comparison of the (squares of the) Euclidean distances of the query
point from sites {(e) and 7(e), which has degree 2.

As discussed in Section 4.3.1, the design of GEOMLIB allows geometric programs to be com-
pletely independent from the representation chosen for the geometric objects. In this case, for
instance, the explicit and implicit representations of a LinearCurve2D are interchangeable, with no
need for modifications in the binary space partition search algorithmic pattern. The only require-
ment is that, in the implementation of interface GeomTester2D, each method with a LinearCurve2D
parameter, e.g., method leftRight (Point2D,LinearCurve2D), have two different implementa-
tions, one for each representation.

7 Conclusions and Future Developments

In the first part of the paper, we have overviewed the preliminary design of the GEOMLIB li-
brary of geometric data structures and algorithms in Java, and we have compared GEOMLIB with
other libraries for geometric computing (especially LEDA and CGAL). The design of GEOMLIB
incorporates modern object-oriented programming concepts and provides a framework for rapid
prototyping. A key aspect is its hierarchy of interfaces which allows multiple views of the same
object. For example, any combinatorial algorithm for graphs and any topological algorithm for
embeddings can be executed directly (without adaptation) on a planar subdivision.

In the second part of the paper, we have presented a case study on the prototype implemen-
tation of planar point location data structures using GEOMLIB. Namely, we have shown how the
binary space partition search scheme can be developed into an algorithmic pattern by implementing
a reusable software component for planar point location, and we have demonstrated how two fun-
damental point location techniques, the chain method and the trapezoid method, can be obtained
by a simple specialization of this component.

37

To our knowledge, GEOMLIB is the only library for geometric computing being developed in
Java. Preliminary usage of GEOMLIB as a rapid prototyping tool has been successful. In addition
to the case study presented in this paper, GEOMLIB has been used as a research tool to quickly
develop robust and reusable components for graph drawing applications [37]. Also, thanks to
GEOMLIB, students in the computational geometry course at Brown University have been able to
complete assignments and projects that are more sophisticated than those done in previous years.
On the negative side, the implementation of GEOMLIB is still at a preliminary stage in comparison
with the C++ libraries LEDA and CGAL. Also, the use of Java and the emphasis on generic data
structures and on their internal reuse penalizes the runtime of GEOMLIB components.

Short-term future developments are aimed at completing the vertical case study. In particular,
they include:

e The implementation of a regularizing algorithm for non-monotone planar subdivisions and
the implementation of an algorithm for obtaining a monotone planar subdivisions from any
(e.g., non-connected) planar subdivision.

e The implementation of the optimal chain method [27] based on fractional cascading. A
preliminary design of this implementation is sketched in Section 6.5.

e The implementation of a checker for verifying the consistency of planar subdivisions based on
the method given in Ref. [22] and of a framework for checking planar point location queries.

e Experimental testing of planar point location methods has already been performed in the
past [25]. We plan to use the prototype described in this paper to perform an experimental test
of point location queries in Voronoi diagrams, comparing the standard explicit representation
of the diagrams with the implicit representation described in Ref. [57] (see also Section 6.6).

Long-term future developments are aimed at extending the current prototype of JDSL/
GEOMLIB. In particular, they include:

e The design and implementation of other algorithmic patterns for geometric computing, e.g.,
plane-sweep, space-sweep, and randomized incremental construction.

e The implementation of a system of arithmetic filters in the arithmetic component of GEOM-
LiB.

e The development of a collection of testers for the interfaces defined in JDSL/ GEoMLIB. The
purpose of these testers is to “certify” that a given class implements correctly an interface.

e The development of applets for the animation of geometric algorithms (see Ref. [45] for an
introduction to this topic).

e An investigation of the applicability of the binary space partition search algorithmic pattern
to geographical information systems.

Acknowledgments

We would like to thank Franco Preparata and Mike Goodrich for their encouragement and support,
and Jim Baker for his collaboration in writing a preliminary version of this paper. We gratefully
acknowledge useful discussions with many members of the JDSL/GEOMLIB team: Ryan Baker,
Michael Boilen, Lubomir Bourdev, Ulrik Brandes, Jitchaya Buranahirun, Robert Cohen, David

38

Emory, Ming En Cho, Natasha Gelfand, Mark Handy, Benoit Hudson, David Jackson, John Kloss,
Masi Oka, Lucy Perry, Maurizio Pizzonia, Keith Schmidt, Andrew Schwerin, Galina Shubina, Marco
da Silva, and Amit Sobti.

We would also like to thank the anonymous referees for their helpful comments and suggestions
on how to simplify the implementation of the case study and improve the presentation.

References
[1] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, Reading, MA, 2nd
edition, 1997. 4, 45
[2] J. Arvo, editor. Graphics Gems II. Academic Press, Boston, MA, 1991. 5

[3] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of determi-
nants using single-precision arithmetic. Algorithmica, 17(2):111-132, 1997. 2, 20

[4] M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42(1):269-291, 1995. 5

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
J. Comput. System Sci., 47(3):549-595, 1993. 5

[6] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting segments. STAM J. Comput.,
29(5):1401-1421, 2000. 2

[7] J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and curve segment intersection using
restricted predicates. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 370-379, 1999. 2

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Object Tech-
nology Series. Addison-Wesley, Reading, MA, 1998. 22

[9] H. Bronnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for com-
putational geometry. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 165—-174, 1998. 20

[10] C. Burnikel. Ezact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D. thesis,
Universitat des Saarlandes, Mar. 1996. 4, 20

[11] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact geometric computation made
easy. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 341-350, 1999. 9

[12] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using cascaded computation. In Proc.
14th Annu. ACM Sympos. Comput. Geom., pages 175-183, 1998. 20

[13] C. Burnikel, J. Kénnemann, K. Mehlhorn, S. Niher, S. Schirra, and C. Uhrig. Exact geometric com-
putation in LEDA. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C18-C19, 1995. 1, 7,
8

[14] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In Proc. 5th
ACM-SIAM Sympos. Discrete Algorithms, pages 16-23, 1994. 2. 20

[15] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Research Report MPI-1-96-1-
001, Max—Planck-Institut fiir Informatik, Saarbriicken, Germany, Jan. 1996.
http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1996-1-001. 8§

[16] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. ACM
Comput. Surv., 17(4):471-522, 1985. 10, 43, 44

[17] B. Chazelle et al. Application challenges to computational geometry: CG impact task force report.
Technical Report TR-521-96, Princeton Univ., Apr. 1996.
http://www.cs.princeton.edu/ chazelle/pubs/CGreport.ps. 1

[18] B. Chazelle and L. J. Guibas. Fractional cascading I. A data structuring technique. Algorithmica,
1(3):133-162, 1986. 36

39

http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1996-1-001
http://www.cs.princeton.edu/~chazelle/pubs/CGreport.ps

[19]

[20]

B. Chazelle and L. J. Guibas. Fractional cascading II. Applications. Algorithmica, 1(3):163—-191, 1986.
36

F. d’Amore, P. G. Franciosa, and G. Liotta. A robust region approach to the computation of geometric
graphs. In G. Bilardi, G. F. Italiano, A. Pietracaprina, and G. Pucci, editors, Algorithms — ESA 98,
volume 1461 of Lecture Notes Comput. Sci., pages 175-186. Springer-Verlag, 1998. 2

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Germany, 1997. 15

O. Devillers, G. Liotta, F. P. Preparata, and R. Tamassia. Checking the convexity of polytopes and the
planarity of subdivisions. Comput. Geom. Theory Appl., 11(3—4):187-208, 1998. 5, 38

O. Devillers and F. Preparata. A probabilistic analysis of the power of arithmetic filters. Discrete
Comput. Geom., 20(4):523-547, 1998. 20

D. P. Dobkin and D. Silver. Applied computational geometry: Towards robust solutions of basic
problems. J. Comput. Syst. Sci., 40(1):70-87, 1989. 2, 20

M. Edahiro, I. Kokubo, and T. Asano. A new point-location algorithm and its practical efficiency —
Comparison with existing algorithms. ACM Trans. Graph., 3(2):86-109, 1984. 3, 21, 38

H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987. 2, 16, 22, 28, 35

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. STAM
J. Comput., 15(2):317-340, 1986. 3, 21, 36, 38

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to cope with degenerate cases
in geometric algorithms. ACM Trans. Graph., 9(1):66-104, 1990. 2, 20

D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung. Maintenance of a
minimum spanning forest in a dynamic plane graph. J. Algorithms, 13(1):33-54, 1992. 15

D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung. Corrigendum
(Maintenance of a minimum spanning forest in a dynamic plane graph). J. Algorithms, 15(1):173, 1993.
15

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On the design of CGAL a compu-
tational geometry algorithms library. Softw. — Pract. Exp., 30(11):1167-1202, 2000. 1, 4, 8

U. Finkler, K. Mehlhorn, and S. Ndher. An application of partitions: Checking priority queues. In
LEDA: A Platform for Combinatorial and Geometric Computing, chapter 5.5.3. Cambridge University
Press, Cambridge, England, 1999. 5, 8

S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations. Internat. J. Comput.
Geom. Appl., 5(1&2):193-213, 1995. 2, 20

S. Fortune and C. J. Van Wyk. Static analysis yields efficient exact integer arithmetic for computational
geometry. ACM Trans. Graph., 15(3):223-248, 1996. 2, 20

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, Reading, MA,
1995. 1,2, 10, 13, 22, 43, 45

N. Gelfand, M. T. Goodrich, and R. Tamassia. Teaching data structure design patterns. In Proc. 29th
ACM SIGCSE Tech. Sympos., pages 331-335, 1998. 1, 10

N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing. In S. H. Whitesides,
editor, Graph Drawing (Proc. GD ’98), volume 1547 of Lecture Notes Comput. Sci., pages 138-152.
Springer-Verlag, 1998. 38

A. S. Glassner, editor. Graphics Gems. Academic Press, Boston, MA, 1990. 5

M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia. Abstracting positional information in data
structures: Locators and positions in JDSL. In OOPSLA 98 Technical Notes, 1998. 1, 10

40

[40]

[46]
[47]

[48]

M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia. Accessing the internal organization of data
structures in the JDSL library. In M. T. Goodrich and C. C. McGeoch, editors, Algorithm Engineering
and Ezperimentation (Proc. ALENEX °99), volume 1619 of Lecture Notes Comput. Sci., pages 124—139.
Springer-Verlag, 1999. 1, 10

M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John Wiley & Sons, New
York, NY, 1998. 1, 10, 11, 19

T. Granlund. The GNU Multiple Precision Arithmetic Library, 1996.
http://www.gnu.org/manual/gmp/ps/gmp.ps.gz. 9

L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms from imprecise
computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208-217, 1989. 2, 20

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation
of Voronoi diagrams. ACM Trans. Graph., 4(2):74-123, 1985. 15

A. Hausner and D. P. Dobkin. Making geometry visible: An introduction to the animation of geometric
algorithms. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 8,
pages 389-423. Elsevier Science Publishers, Amsterdam, The Netherlands, 2000. 38

P. Heckbert, editor. Graphics Gems IV. Academic Press, Boston, MA, 1994. 5

C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE Computer,
22(3):31-41, 1989. 2, 20

C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick. Robust set operations on polyhedral solids. IEEE
Comput. Graph. Appl., 9(6):50-59, 1989. 2, 20

J. E. Hopcroft and P. J. Kahn. A paradigm for robust geometric algorithms. Algorithmica, 7(4):339-380,
1992. 2, 20

I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process. Object Technol-
ogy Series. Addison-Wesley, Reading, MA, 1999. 22

M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations using rational arithmetic.
ACM Trans. Graph., 10(1):71-91, Jan. 1991. 20

D. Kirk, editor. Graphics Gems III. Academic Press, Boston, MA, 1992. 5

D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison Wesley,
Reading, MA, 1993. 4

M. Laszlo. Computational Geometry and Computer Graphics in C++. Prentice Hall, Englewood Cliffs,
NJ, 1996. 6

D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applications. STAM
J. Comput., 6(3):594-606, 1977. 3, 21, 22

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, Reading, MA,
2nd edition, 1999. 45

G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: An illustration of degree-driven
algorithm design. SIAM J. Computing, 28(3):864-889, 1998. 2, 4, 20, 37, 38

M. C. Loui et al. Strategic directions in research in theory of computing. ACM Comput. Surv.,
28(4):575-590, 1996. 1

K. Mehlhorn, M. Miiller, S. Néher, S. Schirra, M. Seel, C. Uhrig, and J. Ziegler. A computational
basis for higher-dimensional computational geometry and applications. Comput. Geom. Theory Appl.,
10(4):289-303, 1998. 1, 7, 8

K. Mehlhorn and S. Naher. LEDA: A platform for combinatorial and geometric computing. Commun.
ACM, 38(1):96-102, 1995. 1,7

41

http://www.gnu.org/manual/gmp/ps/gmp.ps.gz

[61]

[62]

K. Mehlhorn and S. Néher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, England, 1999. 1,7, 8

K. Mehlhorn, S. Naher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking geometric
programs or verification of geometric structures. Comput. Geom. Theory Appl., 12(1-2):85-103, 1999.
5,8

S. Meyers. More Effective C++. Addison-Wesley, Reading, MA, 1996. 7

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoret. Comput.
Sei., 7(2):217-236, 1978. 15

D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard
Template Library. Addison-Wesley, Reading, MA, 1996. 6, 11

ObjectSpace. JGL, the Generic Collection Library for Java.
http://www.objectspace.com/jgl/prodJGL.asp. 7

J. O’'Rourke. Computational Geometry in C. Cambridge University Press, Cambridge, England, 2nd
edition, 1998. 6

M. H. Overmars. Designing the Computational Geometry Algorithms Library CGAL. In M. C. Lin
and D. Manocha, editors, Applied Computational Geometry (Proc. WACG ’96), volume 1148 of Lecture
Notes Comput. Sci., pages 53-58. Springer-Verlag, 1996. 1, 8

A. W. Paeth, editor. Graphics Gems V. Academic Press, Boston, MA, 1995. 5

P. J. Plauger, A. A. Stepanov, M. Lee, A. Alexander, and D. R. Musser. The Standard Template
Libraries. Prentice Hall, Upper Saddle River, NJ, 1998. 6, 11

F. P. Preparata. A new approach to planar point location. STAM J. Comput., 10(3):473-482, 1981. 3,
21, 36

F. P. Preparata. Planar point location revisited. Internat. J. Found. Comput. Sci., 1(1):71-86, 1990.
3, 22

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge
University Press, Cambridge, England, 2nd edition, 1993. 5

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Object
Technology Series. Addison-Wesley, Reading, MA, 1998. 22

S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, chapter 14, pages 597-632. Elsevier Science Publishers,
Amsterdam, The Netherlands, 2000. 4

J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discrete Comput. Geom., 18(3):305-363, 1997. 2, 20

J. Snoeyink. Point location. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 30, pages 559-574. CRC Press, Boca Raton, FL, 1997. 3, 22

K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi diagrams. In-
ternat. J. Comput. Geom. Appl., 4(2):179-228, 1994. 2, 20

Sun. Java 2 SDK, Standard Edition.
http://java.sun.com/products/jdk/1.2/. 7

A. Taivalsaari. On the notion of inheritance. ACM Comput. Surv., 28(3):438-479, 1996. 10, 43
R. Tamassia. On-line planar graph embedding. J. Algorithms, 21(2):201-239, 1996. 15

R. Tamassia et al. Strategic directions in computational geometry. ACM Comput. Surv., 28(4):591-606,
1996. 1,4

42

http://www.objectspace.com/jgl/prodJGL.asp
http://java.sun.com/products/jdk/1.2/

[83] P. van Oosterom. Reactive Data Structures for Geographic Information Systems. Oxford University
Press, Oxford, England, 1993. 4, 16

[84] P. Wegner. Concepts and paradigms of object-oriented programming. ACM OOPS Messenger, 1(1):7—
87, 1990. 10, 43

[85] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 35, pages 653—668. CRC Press, Boca Raton, FL, 1997.
2, 20

[86] C. K. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1):3-23, 1997. 2,
4, 20

[87] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors,
Computing in Fuclidean Geometry, volume 4 of Lecture Notes Series on Computing, pages 452—-492.
World Scientific Press, Singapore, 2nd edition, 1995. 2, 4, 20

A Object-Oriented Concepts

The design of GEOMLIB relies on various object-oriented design concepts (see, e.g., Refs. [16, 35,
80, 84]). In this section, we review the most relevant ones.

Object At the conceptual level, an object is an abstraction describing all relevant aspects of a
certain entity of the reality to be modeled (a particular application domain or the solution
space of a particular problem).

At the implementation level, an object consists of an internal state and a collection of oper-
ations. The operations, usually called methods, represent the only way to interact with the
object, i.e., accessing and possibly modifying its internal state. In other words, the internal
state is hidden to other objects, it cannot be accessed and modified directly; this property is
called encapsulation. Variables used for storing the internal state are called instance variables.

Objects have an associated identity, which makes it possible to distinguish one object from
all the others and allows all references to the same object to be recognized as equivalent. An
object’s identity is logically distinct from its state or behavior, since the latter are not unique.

Class At a conceptual level, a class is an abstraction used to describe the common aspects of a set
of objects.

At the implementation level, a class serves as template from which objects can be created. It
contains a definition of the instance variables and of the methods for its objects. The act of
creating an object of a certain class is called instantiation, and the object is called an instance
of the class. Two instances of a class have private copies of the instance variables defined in
the class while they share the methods.

One may think of a class as specifying a behavior common to all its instances: the methods
determine the behavior, while the instance variables specify a structure for realizing it.

A class acts as a type for its instances, allowing object type checking.

Interface An interface is a description of the behavior of a class of objects, regardless of the repre-
sentation chosen for the class. This description usually consists in the declaration of all the
methods of the class. Interfaces can be seen as a contract between classes of objects and their
users. However, since the state of the object is not modeled in the interface, it is not possible
to use an interface to define a protocol of interaction between an object and its users. This
task is accomplished, as seen above, by classes.

43

A class is said to implement an interface if it conforms to the behavior described in the
interface, i.e., if it provides the semantics for it. This is accomplished by providing an actual
implementation of all the methods declared in the interface. (Note the different, yet related,
meanings of the verb “to implement”.) Different classes may implement the same interface (in
different ways). Also, a class may implement different interfaces at the same time, allowing
an object to be of multiple, orthogonal types.

Like classes, interfaces can be used as a type for objects. This approach presents the fol-
lowing advantage: an object whose type is interface I can refer to an instance of any class
implementing I.

Inheritance Inheritance is a mechanism that allows the definition of a new class or interface to be
based upon that of some existing class or interface, respectively. Accordingly, we distinguish
between class inheritance and interface inheritance.

When a new class (interface) is to be defined, only the properties that differ from those of
the specified existing classes (interfaces) need to be defined or redefined explicitly; the other
properties are automatically extracted from the existing classes (interfaces) and included in
the new class (interface). The new class (interface) is called a subclass (subinterface) of
the specified existing classes (interfaces); each specified existing class (interface) is called a
superclass (superinterface) of the new one. Each instance of a subclass is also an instance
of its superclass(es). Inheritance relationships are transitive, and the term class (interface)
hierarchy is generally used.

If a class (interface) can have only one superclass (superinterface), the term single inher-
itance is used; if, on the contrary, a class (interface) can have more than one superclass
(superinterface) the term multiple inheritance is used.

Although similar, class inheritance and interface inheritance have different purposes. Class
inheritance is an implementation mechanism for sharing behavior and data. Interface inheri-
tance, on the other hand, is a conceptual mechanism for expressing generalization /specialization
abstractions, i.e., for allowing new concepts to be derived from less specific ones. Thus, in-
terface inheritance complements classification/instantiation abstraction provided by classes:
classification is concerned with encapsulating the implementation details, generalization is
concerned with composition and incremental modifications of already abstract behaviors.

Polymorphism Polymorphism is the ability for a programming language construct to have different
types or to manipulate objects of different types. Various kinds of polymorphism have been
defined; we briefly review the taxonomy described in Ref. [16].

Coercion This term indicates a mapping between different types (e.g., between type integer
and type real) in a programming language.

Overloading This term indicates the possibility of defining multiple methods with the same
name, either in the same class (interface) or in different classes (interfaces).
If methods with the same name are defined in the same class (interface), they must differ
in the type and/or in the number of parameters.
If methods with the same name, and type and number of parameters are defined in two
classes (interfaces), one inheriting from the other, the term overriding is also used.

Inclusion polymorphism It allows a method to operate with parameters from a range of types.
The range of types is determined by an inheritance relationship. If a certain class
(interface) T is used as the type for a formal parameter, then any object whose type is a

44

subclass (subinterface) of T can be passed to the method as the actual parameter. Note
the difference between overloading and inclusion polymorphism: in the former case, the
different definitions of the method correspond to different implementations; in the latter
case, it is the same implementation of the method that can be used for different types
of parameters.

Parametric polymorphism It allows a method to be defined with parameters of generic type.
For each application of the method, the generic types for the parameters are replaced
with actual types (see footnote 5 on page 6).

In order to fully take advantage of polymorphism, the binding of a method name to the
code implementing it should be done at run time rather than at compile/link time; the term
dynamic binding, as opposed to static binding, is used.

Also, type compatibility in assignment operations and parameter passing may be checked at
compile/link time or at run time; the terms static type checking and dynamic type checking
are used, respectively.

Design pattern A design pattern abstracts, identifies, and names the key aspects of a solution to
a common object-oriented design problem. It identifies the classes and objects participat-
ing in the solution, their roles and the way they interact with each other. Collections of
systematically described design patterns (see e.g., Ref. [35]) are a valuable tool for software
designers. Their goal is to encourage the reuse of existing design solutions for similar prob-
lems rather than designing a new application from scratch. They are usually classified into
three categories, according to their purpose:

Creational patterns concern the process of object creation.
Structural patterns deal with the composition of classes and objects.

Behavioral patterns characterize the ways in which classes or objects interact and distribute
responsibility.

B Implementation Language

We have chosen Java as the implementation language for JDSL/GEOMLIB since it directly pro-
vides a number of concepts and language constructs used in object-oriented modeling and design,
such as packages, interfaces, classes, objects, and polymorphism [1]. Note, however, that the
JDSL/GEOMLIB design is not directly dependent on Java.

Java compilers produce an intermediate, language independent byte code that is comparable to
the intermediate code produced by most compilers. (In fact, various compilers have been introduced
for other languages to produce Java byte code.) A number of aspects distinguish this byte code
from similar formats: it is portable, to the extent that it can be loaded over a network, and it is
secure. In particular, memory addresses and integers are distinct in Java byte code to prevent any
type of pointer arithmetic. The byte code is loaded and executed by a Java virtual machine [1, 56].

Running a Java program with high performance usually involves converting the portable and
secure intermediate Java byte code to platform-specific native code. The conversion may be ex-
ecuted, while the program is loading or running, by a just-in-time compiler, or, separately, by a
high performance compiler. Recently, however, Sun has released a second-generation Java Virtual
Machine, named HotSpot, which should allow Java byte code to be executed at a speed comparable
to that of platform-specific native code.

45

C Code Fragments

public abstract class AbstractRegion extends HashtableDecorable implements Region {
// class variable(s)
protected static GeomTester2D gt- = new GeomTester2DImpl();
// instance variable(s)
protected String label_;
// constructor(s)

protected AbstractRegion (String label) {
label_ = label;

}

// instance method(s)

public Region locate (Point2D q) {
return this;

}

// instance method(s) from java.lang.Object

public String toString () {
return label_;

}

public class FaceRegion extends AbstractRegion {
// constructor(s)

public FaceRegion (String label) {
super(label);

public class HorEdgeRegion extends AbstractRegion {
// constructor(s)

public HorEdgeRegion (String label) {
super(label);

Code Fragment 7: Abstract class AbstractRegion, and classes FaceRegion and HorEdgeRegion.

46

public class EdgeRegion extends AbstractRegion implements Separator {
// instance variable(s)
protected LinearCurve2D linearCurve_;
// constructor(s)
public EdgeRegion (LinearCurve2D linearCurve, String label) {
super(label);

linearCurve_ = linearCurve;

}

// instance method(s)

public DiscrimResult whichSide (Point2D q) {
return new DiscrimResultImpl(gt_.leftRight(q,linearCurve_),this);

}

public class VertexRegion extends AbstractRegion implements Separator {
// instance variable(s)
protected Point2D point_;
// constructor(s)
public VertexRegion (Point2D point, String label) {
super(label);
point_ = point;

}

// instance method(s)

public DiscrimResult whichSide (Point2D q) {
return new DiscrimResultImpl(gt_.leftRight(q,point_),this);

}

Code Fragment 8: Classes EdgeRegion and VertexRegion.

47

public class HorLine extends AbstractRegion implements Separator {
// instance variable(s)

protected Point2D point_;
protected Region onRegion_;

// constructor(s)

public HorLine (Point2D point, String label, Region onRegion) {
super(label);
point_ = point;
onRegion_ = onRegion,;

}

// instance method(s)

public DiscrimResult whichSide (Point2D q) {
return new DiscrimResultImpl(gt-.aboveBelow(q,point_),onRegion_);

}

public class DiscrimResultImpl implements DiscrimResult {
// instance variable(s)

protected int side_;
protected Region region_;

// constructor(s)

public DiscrimResultImpl (int side, Region region) {
side_ = side;
region_ = region;

}

// instance method(s)

public int side () {
return side_;

}

public Region region () {
return region_;

}

Code Fragment 9: Classes HorLine and DiscrimResultImpl.

48

public class HorInterval extends AbstractRegion implements Separator {
// instance variable(s)

protected Point2D leftPoint_;
protected Point2D rightPoint_;
protected Region leftPointOnRegion_;
protected Region rightPointOnRegion_;
protected Region onRegion_;

// constructor(s)

public HorInterval (Point2D leftPoint, Point2D rightPoint, String label, Region leftPointOnRegion,
Region rightPointOnRegion, Region onRegion) {

super(label);

leftPoint_ = leftPoint;

rightPoint_ = rightPoint;

leftPointOnRegion_ = leftPointOnRegion;

rightPointOnRegion_ = rightPointOnRegion;

onRegion_ = onRegion;

}

// instance method(s)

public DiscrimResult whichSide (Point2D q) {
int leftTest;
int rightTest;

if (leftPoint- == Point2D.INFINITE)
leftTest = GeomTester2D.POSITIVE;
else

leftTest = gt_.leftRight(q,leftPoint._);
switch (leftTest) {
case GeomTester2D. NEGATIVE:
return new DiscrimResultImpl(GeomTester2D.NEGATIVE, this);
case GeomTester2D.ON:
return new DiscrimResultImpl(GeomTester2D.ON,leftPointOnRegion._);
case GeomTester2D.POSITIVE:

default:
if (rightPoint. == Point2D.INFINITE)
rightTest = GeomTester2D. NEGATIVE;
else

rightTest = gt_.leftRight(q,rightPoint_);
switch (rightTest) {
case GeomTester2D.NEGATIVE:
return new DiscrimResultImpl(GeomTester2D.ON,onRegion_);
case GeomTester2D.ON:
return new DiscrimResultImpl(GeomTester2D.ON,rightPointOnRegion_);
case GeomTester2D.POSITIVE:
default:
return new DiscrimResultImpl(GeomTester2D.POSITIVE,this);
}
}
}

Code Fragment 10: Class HorInterval.

49

	Introduction
	Goals of GeomLib
	Key Aspects of GeomLib
	A Vertical Case Study on Planar Point Location
	Organization of the Paper

	Requirements for a Geometric Computing Library
	Previous Work
	Gems and recipes
	Specialized Libraries
	STL, Java Collections, and JGL
	LEDA
	CGAL

	The Preliminary Design of JDSL/GeomLib
	The Combinatorial Component
	The basic data structures subcomponent
	The graph subcomponent

	The Topological Component
	The Geometric Component
	The basic geometric objects subcomponent
	The advanced geometric subcomponent

	The Arithmetic Component

	Design Evaluation
	Point Location: A Vertical Case Study
	Review of the Chain Method
	The Binary Space Partition Search Algorithmic Pattern
	Interaction between Components
	The Trapezoid Method
	Optimal Chain Method
	Test Primitives in Voronoi Diagrams

	Conclusions and Future Developments
	Object-Oriented Concepts
	Implementation Language
	Code Fragments

