
Testers and Visualizers for Teaching Data Structures∗

Ryan S. Baker

Dept. Comput. Sci.
Brown Univ.

rsb@cs.brown.edu

Michael Boilen

Dept. Comput. Sci.
Brown Univ.

mgb@cs.brown.edu

Michael T. Goodrich

Dept. Comput. Sci.
Johns Hopkins Univ.

goodrich@cs.jhu.edu

Roberto Tamassia

Dept. Comput. Sci.
Brown Univ.

rt@cs.brown.edu

B. Aaron Stibel

Dept. Comput. Sci.
Johns Hopkins Univ.

astibel@cs.jhu.edu

Abstract

We present two tools to support the teaching of data struc-

tures and algorithms: Visualizers, which provide interactive

visualizations of user-written data structures, and Testers,

which check the functionality of user-written data structures.

We outline a prototype implementation of visualizers and

testers for data structures written in Java, and report on

classroom use of testers and visualizers in an introductory

Data Structures and Algorithms (CS2) course.

1 Introduction

Much recent work in Computer Science education has
studied the development of computer-aided tools, such as
algorithm animation, for pedagogical purposes (e.g., see
the 1998 SIGCSE proceedings for no fewer than eight pa-
pers on this topic). Some lessons learned from this work
include observations that demonstration animations are
most effective when they are accompanied by supporting
text or audio explanation, and the use of animation is
even more effective if students can produce animations
from their own code.

In this paper, we describe computer tools for teaching
introductory data structures (CS2), focusing on methods
for the visualization and testing of student-written code.
We present prototype visualizers and testers, and report
on classroom experience that shows how they were used
by students learning data structures in CS2. Unlike some
previous animation schemes, our approach does not re-
quire any modification to the student’s code in order to
facilitate visualization and testing. Rather, we simply
require that the student’s code conform to a simple ap-

∗Work supported by the U.S. Army Research Office under grant
DAAH04–96–1–0013 and by the National Science Foundation un-
der grants CCR–9625289 and CCR–9732327.

plication programmer interface (API).
CS2 at Brown and Johns Hopkins is taught in Java

within the object-oriented paradigm [6]. Instead of writ-
ing single-use, throw-away implementations data struc-
tures for a specific task, students write generic, reusable
implementations that conform to given APIs. Students
then implement algorithms assuming the availability of
data structures that realize these APIs. To emphasize
coherent design, the APIs are given for a simplified ver-
sion of those in JDSL, the Library of Data Structures
in Java [1, 5], a research effort currently in progress at
Brown and Johns Hopkins.

Although our visualizers and testers have been de-
veloped and experimented with in Java, we believe that
they can be adapted and successfully used with any
object-oriented programming language.

2 Visualizers

2.1 Previous work

In the last fifteen years, a wide variety of systems for
visualizing algorithms and data structures have been de-
veloped. Although there is enough diversity and com-
plexity among them to allow the construction of an ex-
tensive taxonomy [11], most of these visualizers can be
separated into two broad groups in relation to their use
for teaching data structures.

The first group of visualizers, from the pioneering
systems BALSA [3] and TANGO [15], to recent efforts
such as JAWAA [10] and GAIGS [9], are powerful tools
for animating and comparing different algorithms. They
are also useful for teaching data structures, because they
provide a high-level, conceptual view of how the data
structures function. One limitation of these visualizers,
however, is that they are either intended to give a non-
interactive demonstration of the structure performing
some operation, or they allow access only to a limited
subset of a data structure’s potential functionality. We
believe that in a CS2 class that emphasizes generic data
structures, it is more useful to have a tool that students
can plug their data structures directly into and see if all
of its methods functioned as intended.

A second group of visualizers, inspired in part by
Myers’ work on Incense [8], have been used with some



Figure 1: The JDSL Visualizer, seen here displaying a Red-Black Tree.

success in introductory CS courses, from Amethyst [11]
and Field [13] to more recent visualization systems such
as the one constructed by Sangwan et al. [14]. These
visualizers allow the user considerable interactivity with
their data structures as well as a display of the different
data structures in memory, by integrating visualization
with a source-level debugger. Nevertheless, they accom-
plish this task by displaying the physical organization of
the data in memory rather than the underlying structure
it represents, which is undesirable from the point of view
of an introductory data structures course.

2.2 Goals

We advocate the development of a visualizer of user-
implemented data structures with the following goals:

• Produce visualizations of data structures while in-
terfering minimally with their design.

• Allow users to interact at runtime with all the
methods of a data structure to verify its operation.

• Display data structures at a conceptual level in-
stead of simply visualizing the contents of memory.

Previous work addressing the above requirements in-
cludes a system by Augenstein and Langsham [2] that
provides a high-level, abstract display of data structures
written in Pascal. This system is capable of simultane-
ous visualizations of multiple data structures. Unfortu-
nately, its interaction with user-written programs is ac-
complished by requiring the user to modify her program
to insert statements that produce output in a specified
format to a text file.

2.3 The JDSL Visualizer

We describe in this paper the JDSL Visualizer, which is
a tool for visualizing data structures in Java. The sys-
tem interfaces with a user-written implementation of a
data structure through the API of that data structure, as
specified in the JDSL library [1, 5]. It can display more
than one type of structure at once, showing interactions
between structures (for example, a binary tree and the
sequence of its nodes visited in preorder). It keeps an ex-
tensive history of the active data structures by recording
for any point in time their state, the methods invoked



on them (including parameters), and the return values.
Unlike many previous visualization systems, which only
allow the user to move along the history, it also supports
direct jumps to specific points in time.

By default, the JDSL Visualizer displays a data
structure before and after the execution of API meth-
ods. In order to allow users to examine the inner work-
ings of their implementation, it additionally supports
the display of snapshots based on reaching “interesting
events”[4], designated by “hooks” within the user’s code,
such as:

viz.VisualizationController.snapshot
(java.awt.Color.yellow,"Recoloring");

Such hooks are entirely optional, however, for the novice
student may simply wish to visualize his data structure
without making any code modifications.

As shown in Figure 1, the JDSL Visualizer’s window
is split into several different panels. The top-left panel
displays the structure at a specific moment in time; the
history panel is at the top-right (note that user-defined
snapshots are colored lighter in the figure). On the bot-
tom level there is a panel of buttons, where each but-
ton corresponds to a method of the data structure, and
a panel that allows the user to set the parameters of
method calls. Not shown are a window displaying the
exceptions thrown and a window for on-line help.

A prototype of the JDSL Visualizer has been imple-
mented. It supports six fundamental data structures:
Enumerations, Sequences, Binary Trees, Restructurable
Binary Trees (i.e., binary trees with rotations), Heaps,
and Red-Black Trees.

2.4 How the Visualizer works

The visualizer has a framework of different components
that can be swapped in and out depending on what
structure is currently being visualized. Administrative
components keep track of the different structures in
memory, the history of each structure, and which struc-
ture is currently on screen. When the user wants to dis-
play a different type of structure than the current one,
the administrative components swap in different compo-
nents for displaying the structure, and for its buttons
and parameters. All of the components are designed to
conform to interfaces, so that if a different sort of func-
tionality is needed — for example, the ability to visualize
a structure in a different way or the ability to input a
new sort of parameter — all that is necessary is writing a
new class (or set of classes) to conform to the interfaces.
This modular design should make it easy to expand the
current prototype.

Whenever an interesting event occurs, either user-
defined or predefined (e.g., when an API method is called
from the visualizer), the visualizer updates its history of
all of the data structures in memory, reading the data
out of them into data structures known to be reliable.

The histories of each of the data structures are synchro-
nized to allow the user to examine what each looked like
at one point in time. After all of the histories are up
to date, the visualizer displays the on-screen structure
in its current state by iterating through each of its el-
ements, starting, for example, at the root of a tree or
first element of a sequence, and continuing recursively
until all leaves or the last element have been explored.
The visualization algorithms are designed to accommo-
date any implementation that includes a small subset of
the structure’s full functionality—for example, visualiz-
ing a Binary Tree requires that we can get the root, get
the children of an arbitrary node, and test if a node has
children.

3 Testers

3.1 Previous work

Program testers have been previously used as aids to
students and instructors. However, unlike visualizers,
testers have received little attention in the computer sci-
ence education literature. One example of a tester pack-
age is ASSYST [7], which is designed to automate the
grading of student programs. It checks correctness by
parsing the text output of a program, using Lex and
Yacc, and compares it with the correct output. AS-
SYST also measures execution time and computes sev-
eral source code metrics to check for appropriate com-
menting and style.

The TRY system [12] is another package to test stu-
dent programs. Unlike ASSYST, this package was de-
signed to be used by both the students and the instruc-
tor. TRY also compares text output from a program
to the saved output from a correct program. Its main
feature is that it allows students to run a TRY tester
without seeing the correct output. Unfortunately, this
feature causes many security problems.

3.2 The JDSL Testers

Our JDSL Testers were designed to be thorough, ro-
bust, and easy to use. By being thorough, our approach
provides students with accurate reports on the function-
ality of their programs, which in turn increases grading
efficiency. We do not achieve this goal by parsing text
output as previous testers have done, for such an ap-
proach would be unwieldy for testing large programs.
Moreover, output-parsing approaches usually have diffi-
culty recovering from error conditions and often do not
provide accurate results. Instead, we interact directly
with the data structures, handling and storing responses,
and comparing the behavior of the student’s code with
a “reference” implementation. This approach gives our
testers considerable flexibility and functionality, and at
the same time allows the student to use them without
having to modify her code.



Another goal for us was to make the tester program
easy to adapt, so that students could modify the testers
for their own needs. To meet this goal, we provided
the students with templates that they could use to write
their own tester programs. By using the templates, doc-
umentation, and sample code, student could write their
own testers.

Recently, the testers have been modified to take ad-
vantage of a new and powerful feature of the Java lan-
guage, the Reflection API. By using introspection, the
testers have been reduced to a clean “scripting” lan-
guage.

3.3 How the testers work

The JDSL Tester API consists of four major compo-
nents, the parser, the generic tester, the generic factory,
and the comparator interface. The generic tester exe-
cute methods on data structures. Since it utilizes the
Reflection API, it takes parameters as strings (see the
example code below), and then uses the parser to inter-
pret these strings. The generic factory contains methods
to make creating and initializing data structures easier.
The comparator interface provides a framework to test
two structures against each other. Commonly, the tester
will be run on a demonstration implementation and the
student’s implementation simultaneously. The demon-
stration implementation is known to be correct, so by
comparing the two implementations, one can judge the
correctness of the student’s implementation.

In order to write a tester, one must specialize the
generic tester, the generic factory, and, if desired, a com-
parator. The tester will use the factory to produce data
structures, and then execute methods on those struc-
tures.

Below is a snippet of a tester that illustrates some of
the features that the JDSL Tester API has:
for(int i=0;i<10;i++) {

execute("insert","Integer("+i+")",
"Integer("+(10-i)+")" );

executeCheckReturn("size","void","int "+i);
}
This snippet of code inserts ten elements into a data
structure, and checks to see if the size is correct after
each insertion. The executeCheckReturn tests the return
of the specified method against the provided value. If
the test fails, a useful error message will be automati-
cally produced. Also, if the code being tested throws an
unexpected exception, it will be caught, an error mes-
sage will be produced, and depending on how the tester
is configured, it will either continue or abort. In addition,
if the student’s size method is incorrect, and enters an
infinite loop, the tester will terminate the method’s ex-
ecution after a user specified timeout period has passed,
produce an error message, and continue. The tester can

also check if a method throws an exception, and produce
an error message if the exception is not thrown.

4 Classroom Experiences

4.1 Integration of Visualizers and Testers in CS2

In the CS2 class at Brown, the JDSL Visualizer is used
by the students in assignments where they program
generic data structures such as sequences, binary trees,
heaps, and dictionaries. Once a student has correctly
implemented a small subset of the structure’s methods,
she will be able to see what her structure looks like and
interact with it. From this point, students will be able to
use the visualizer to help them design the data structure,
testing each method in a simple and intuitive fashion af-
ter writing it. For more complicated data structures (for
example, red-black trees) the student will be able to see
exactly how the structure is performing a complex oper-
ation.

Once a student has written all the code required to
complete the assignment, she can then use a JDSL tester
to check her data structure for correctness. At first we
considered providing the students with a comprehensive
tester to check many special cases. However, the avail-
ability of a complete tester would not encourage a stu-
dent to think critically about the different special cases
that must be handled by her code. Hence, we decided to
provide the students with incomplete testers that only
test some methods and some cases. The students are
then encouraged to think about their programs, and
identify special cases, and then write testers for them.

Through the combination of these two methods of
verification, the student gets immediate feedback at the
level of abstraction that their problem needs: concep-
tual problems will become obvious in the visualizer while
more subtle special-case errors will be pointed out by the
tester. This feedback is more useful than only providing
standard debugging tools and then giving feedback dur-
ing grading. Feedback through the visualizer and testers
is immediate, and allows the student to spend her time
improving her code rather than writing the code to test
her program.

4.2 Positive Experiences

The JDSL testers and visualizer have been used in CS2
at Brown for one and two years respectively. Thanks to
questionnaires given to the 120 students after the third
week of class this spring and at the end of semester, as
well as the suggestions of former students, we have ample
and specific feedback to use in evaluating the usefulness
of visualizers and testers in CS2.

Many students found testers and the visualizer to be
valuable debugging tools, and by semester’s end, only
4% of the class reported that they had not found the vi-
sualizer and testers useful. Teaching assistants observed



that the students who used the visualizer and testers
regularly produced programs with fewer errors.

One concern we had was that if students had to learn
how to use the visualizer and testers on top of the CS2
material, they might find the class’ initial learning curve
unacceptably steep. However, we were pleased to find
that this was not a major problem. In the week-three
questionnaire, 86% of the class said that understanding
the visualizer and testers was not the trickiest part of
the class thus far.

4.3 Limitations and Drawbacks

Although the majority of our experiences with the visu-
alizer and testers have been positive, we have found some
drawbacks to using them in CS2. Some students had
difficulty seeing the visualizer and testers as complemen-
tary tools, and therefore did not use them in the most
effective manner. Particularly, in the situation where the
tester revealed a subtle bug that the visualizer did not
display, many students perceived that as an indication
that the tester was faulty rather than as evidence that
their own program was incorrect.

5 Future Directions

In changing the visualizer from a prototype to a fin-
ished product, a few steps need to be taken. One
essential modification is to switch the visualizer to
an introspection-based architecture for creating buttons
corresponding to the various methods of the structure
(as opposed to the current customized-button approach)
in order to speed its adaptation to different interfaces.
Another change is the previously mentioned expansion
of the set of data structures supported by the visualizer.

Currently, the testers only check whether an im-
plementation is correct. We would like to expand the
testers’ capabilities to determine time and space com-
plexity, since these are both qualities of a good imple-
mentation, and are commonly stressed in CS2.

A final future direction for the visualizer and testers
is to complete their adaptation to the Internet. Using
a browser that supports the full capabilities of Java 1.1,
the JDSL visualizer can be run within the browser and
can load structures that are at remote sites by their URL.
The testers are currently designed to run within a shell,
but would benefit from being able to load structures from
remote sites.

6 Availability

To read more information about the JDSL Visualizer
and JDSL Testers, point your browser at the JDSL Web
page http://www.cs.brown.edu/cgc/jdsl. The visu-
alizer can be run over the Web using a browser, and
screen shots are available for perusal. Additionally, the

visualizer and example testers are available for download
at that site.

References

[1] The Library of Data Structures in JAVA Webpage.
http://www.cs.brown.edu/cgc/jdsl.

[2] M. Augenstein and Y. Langsham. Graphic displays
of data structures on the IBM PC. Proc. SIGCSE,
1986.

[3] M. H. Brown. Algorithm Animation. MIT Press,
1988.

[4] M. H. Brown and R. Sedgwick. Interesting events.
In J. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, editors, Software Visualization: Program-
ming as a Multimedia Experience, chapter 12, pages
155–171. MIT Press, 1997.

[5] M. T. Goodrich, M. Handy, B. Hudson, and
R. Tamassia. Accessing the internal organization of
data structures in the JDSL library. In Proc. Work-
shop on Algorithm Engineering and Experimenta-
tion, 1999.

[6] M. T. Goodrich and R. Tamassia. Data Structures
and Algorithms in JAVA. Wiley, 1998.

[7] D. Jackson and M. Usher. Grading student pro-
grams using ASSYST. Proc. SIGCSE, 1997.

[8] B. Meyers. A system for displaying data structures.
Computer Graphics, 17(3), 1983.

[9] T. L. Naps and E. Bressler. A multi-windowed en-
vironment for simultaneous visualization of related
algorithms on the World Wide Web. Proc. SIGCSE,
1998.

[10] W. C. Pierson and S. H. Rodger. Web-based an-
imation of data structures using JAWAA. Proc.
SIGCSE, 1998.

[11] B. A. Price, R. M. Baecker, and I. S. Small. A prin-
cipled taxonomy of software visualization. J. Visual
Languages and Computing, 3(3):211–264, 1993.

[12] K. A. Reek. The TRY system or how to avoid test-
ing student programs. Proc. SIGCSE, 1989.

[13] S. Reiss. Visualization for Software Engineer-
ing — Programming Environments. In J. Stasko,
J. Domingue, M. H. Brown, and B. Price, editors,
Software Visualization: Programming as a Multi-
media Experience, chapter 18, pages 259–276. MIT
Press, 1997.

[14] R. Sangwan, J. Korsh, and P. LaFolette. A system
for program visualization in the classroom. Proc.
SIGCSE, 1998.

[15] J. T. Stasko. TANGO: a framework and system for
algorithm animation. IEEE Computer, 23(9):27–39,
1990.


