Tiered Vector:
An Efficient Dynamic Array for JDSL

Michael T. Goodrich John G. Kloss II
Johns Hopkins University Johns Hopkins University
goodrich@cs. jhu.edu jkloss@cs. jhu.edu

August 27, 1998

Abstract

We demonstrate the Tiered Vector, an implementation of the Vector ADT that provides O(1) worst
case for rank based retrieval and O(y/n) amortized time for insertion and deletion. We also provide
results from experiments involving the use of the Tiered Vector in JDSL, the Data Structures Library in
Java.

Keywords: JDSL, Data Structure, Vector, Dynamic Array

Title

Deque

Introduction Element Insertion

Element Retrieval

Access Test Remove Test

Element Deletion

Insert Test References

1 Introduction

A Vector is a dynamic sequential list of elements that can expand or contract in size. When the number of
elements in a Vector becomes larger or much smaller than the memory allocated, new memory is allocated
(or reallocated) to accomodate the change in size and elements are reassigned to this memory. Each element
e in a Vector is assigned an index or rank, which indicates the number of elements in front of e in the Vector.
Rank can also be viewed as a current “address” for the element e. Each rank is assigned sequentially— that is,
there are no gaps in the rank ordering. However an element may be inserted or deleted at any existing rank
r. Such an operation forces all elements of rank r + 1,...,n to be shifted either left or right, respectively.

In a standard implementation of the Vector Abstract Data Type (ADT) we would use an array S to
realize the Vector. To retrieve an element of rank r from this Vector we simply return the element located at
the memory address S[r]. This is clearly constant time. However, both insertion and deletion may take O(n)
time with the worst case occurring when an element has rank 0 since either operation forces all elements at
ranks 1,...,n to be shifted.

1.1 Vector Abstract Data Type

The Vector ADT supports the following operations:

insertElemAtRank(r,e): Inserts an element e into the Vector at rank r.
removeElemAtRank(r): Removes the element stored at rank r and returns it.

elemAtRank(r): Retrieves the element e at rank r.

A Vector should guarantee constant time performance for the elemAtRank(r) operation, where n is the
number of elements held in the Vector.

The above methods are defined, for example in the RankedSequence interface as part of the Data Struc-
tures Library JDSL. This interface allows Vectors (and other ranked lists) to be easily used as components

for

e M-ary Trees. Because Vectors dynamically resize and have constant time access to elements they are

useful as tree nodes in M-ary Trees.

¢ Sorting routines. For sorting routines that cannot be done in place a Vector can be used as backing

store for the routine, resizing to the size of the sorting array.

e Database tables. In many database routines, the size of the database tables cannot be determined

during creation. A Vector provides an easy method of storing dynamically expanding tables.

1.2 Relationships to Previous Work

A standard implementation of the Vector ADT is provided in the Java class libraries. It uses a bit copy routine
to shift elements in its underlying array. This implementation provides the standard O(n) time bounds for
insertion and deletion. Java also provides a capacitylncrement parameter which allows the Vector to double
in size or grow by a fixed £ amount upon every expansion. This specified capacity use should be done with

caution, however, for the fixed method of expansion is know to be O(n?) over n operations [7].

Our approach to implementing the Vector ADT is to use a 2-level array we call the “Tiered Vector”.
Several hashing implementations use a similar underlying structure to that of the Tiered Vector although
none in a manner as we do or in a way that can be easily adapted to achieve the performance bounds we
achieve. Larson [8] implements a linear hashing scheme which uses as a base structure a directory that
references a series of fixed size segements. Both the directory and segements are of size I = 2¥ allowing the
use of a bit shift and mask operation to access any element within the hash table. However, Larson’s method

is a hashed scheme and provides no means of rank-order retrieval or update.

Sitarski also uses a s* fixed size directory-segement scheme which he terms Hashed Array Trees [9)].
Sitarski was primarily interested in providing an efficient implementation for appending elements to an
array. He does not, however, provide an efficient method for insertion or deletion into the array (O(n) time
bounds for both).

The Tiered Vector may also be visualized as a highly compressed B-Tree [1] [6] and the searching mech-
anism is somewhat similar. In a B-Tree each node v maintains up to d keys and d + 1 pointers, each pointer
lying between key pairs and referencing a child of v. Searching the tree takes place by comparing a search
key k with the d keys in a node until we find a key pair (d;,d;+1) such that d; < k < d;;1 and following the
link which lies between the key pair. In the Tiered Vector there is only one internal node n with exactly
[keys, each key paired with a link to an exteranl node with exactly [keys. Search comparisons are based
upon higher-bit equality of keys. That is, if a search key k has the same higher order bits as a key /; in n
then we follow that link. Furthermore, the keys in n do not necessarily represent actual keys in the external
nodes. They instead act as “indices” and in this sense are related to the internal node keys of the B*-Tree
as documented by Bayer and Wedekind [2] [10]. The main differences between a Tiered Vector and a B-Tree
or BT-Tree, then, is that there is only one internal node whose size is not a fixed constant. Furthermore,

the sizes of external nodes in our case are kept very similar, so as to allow fast access.

1.3 Our Results

We present a simple variation on the Vector, termed the Tiered Vector. This data structure provides constant
time bounds for the elemAtRank(r) retrieval, yet requires only O(y/n) time for insertElemAtRank(r,e) and
removeElemAtRank(r). Furthermore, though expansion and contractionof the Tiered Vector is linear in

time, the amortized time over a series of n insert and delete operations remains O(y/n).

2 Indexable Circular Deque

The major component of the Tiered Vector is a set S of indexable circular deques. The deque is described
by Knuth [5] as a linear list which provides constant time insert and delete operations at either the head or
tail of this list. A circular deque S is a list which is held in a sequential section of memory of fixed size I. S
maintains a pointer h, which references the index in memory of the head of this list as well as a pointer ¢,
which references the tail. These values are decremented or incremented in order to insert or delete elements
from the head or tail of S. We will let |S| denote the number of elements in S. A circular deque is considered
full when |S| = 1.

An indexable circular deque assigns a rank to each element within the list, where the head element has
rank 0, its proceeding element rank 1, etc. An element’s rank in S does not necessarily correspond to its

index in memory. For example, consider the deque S in Figure 1a. The rank 0 element 2, which is pointed to

by h, is located at S[3] whereas the rank 1 element 3 is at S[0]. To access any element of rank r, 0 < r <,
in S we calculate the translation value 7' < (h +r) mod [and retrieve the desired element at location S[r'].
For our purposes, the size of each deque in S is equal to 2¥ where k is an integer value. This choice of size
allows us to use a method similar to Sitarski’s [9] in that modulus operations may be performed using a bit
mask of k lower-order bits.

Insertion into the head of a circular deque is easily performed in constant time by decrementing A and
inserting the element at S[h]. If decrementing h results in h < 0 we set h + (I — 1). Code segment
la, insertFirst(S,e), demonstrates how this operation may be coded. An example of insertFirst(S,e) is
illustrated in Figure 1b where h is shifted from index 0 to index 3 via the insertion of 0 at rank 0 in S. A
similar procedure removeFirst(S) (used below) is an analogue of the code in la.

Constant time insertion and deletion at the tail of a circular deque is obtained through the use of a tail
pointer. The method is analogous to that of insertion and deletion at the head. The method, removeLast
which demostrates this operation is shown in code section 1b. The opposite operation, insertLast is nearly

identical.

procedure insertFirst(S,e) procedure removeLast(S)
B+ (h—1)mod! e+ S[t]
S[h'] + e t+ (t—1)mod!
h<+ W return e
Code 1la: insertFirst Code 1b: removelast

3 Tiered Vector

The Tiered Vector is a set of [indexable circular

deques, § = {51, 52,...,5}. As was mentioned

above, each deque is of size I where I = 2* for some 0 1 2 3
integer parameter k. Thus the total number of (a)
elements a Tiered Vector may hold before it must

be expanded is I2. Given n elements, S partitions 01 2 3
these elements into [n/l] sets where the deque Sy (b) ﬂgﬂ
contains the elements of rank 0,1,...,1 — 1, Sy 01 h2 3
contains [, +1,...,2] — 1, etc. All remaining sets (©) 1230
Stn/i1+1s - -»S1 are empty.

3.1 Element Retrieval Fig 1. Circular deque S of size 4

Element retrieval in a Tiered Vector is very similar

to methods proposed by Larson [8] and Sitarski [9].
To access any element of rank r in the Vector we first determine in which deque the element is located by

calculating ¢ « |r/l]. We then calculate its location in deque S; via the translation ' as mentioned above
and retrieve the desired element at location S;[r']. Since the number of deques in S is [= 2¥ we may use
a bit shift instead of division to determine which deque S; holds the rank r element. By storing the shift

and bit mask values we can reduce the number of operations required to retrieve an element from a Tiered

Vector to only two, thus holding access time to only twice that of normal array-based Vector retrieval.

3.2 Element Insertion

Insertion into a Tiered Vector is composed of two phases— Pop-Push and Shift. The purpose of the two
phase process is to reduce the number of operations to O(l) (which we prove to be equal to O(y/n) below),

as opposed to the O(n) operations required by normal Vector insertion.

In the Pop-Push phase we first determine the deques in which the elements at rank r and rank n — 1
are located, where the element of rank n — 1 indicates the last element in the Tiered Vector. Term these
deques Ssyup and Seng. These deques are used as the bounds for a series of pair-wise pop-push operations.
For each deque S;, top < i < end, we will pop its tail item and push it onto the head of deque S; ;1. As was
demonstrated above, each such operation takes only constant time. Since there are a total of [deques this
phase requires a maximum of O(l) operations.

In the Shift phase we then shift the elements of S, to the left or right inorder to make room for the new
element at rank r. We are assured that such space exists by the Pop-Push phase. Since each deque holds
a maximum of / elements this operation takes O(l) time. Figure 1c¢ demonstrates this operation where the
element 1 is inserted at rank 1 forcing the elements 2 and 3 to be shifted to the right. The implementation of
insertion is demonstrated in code segment 2b. Figure 2 demonstrates the insertion operation where element

1 is inserted at rank 1.
A special case occurs when the number of ele-
ments in the Tiered Vector, n equals the maximum procedure expand()
'+ 21
S’ «+ new set of arrays of size I’ where each
array S} in §' is of size I'

space provided, I2. In this case the data structure

must be expanded inorder to accomodate new el-

ements. However, we also wish to preserve the foreach S! in &'

structure of the Tiered Vector in order to insure realign rank order in Sz; to match indices
only O(l) operations are performed. We achieve fi?iisgn rank order in Sy;41 to match in-
this by first reseting the fixed length [to I’ «+ 2l S Sa2i U Sait1

and then creating a new set of I’ subarrays, S’ h; (_/ ixl

where the first 11’ elements of &' are the result f:lfg

of a pairwise merge and rank ordering of the sub-

arrays in §. Code segment 3 demonstrates this Code 3: expand

procedure.

Theorem 1 Insertion into a Tiered Vector where expansion is not required takes O(y/n) time.

Expansion is demonstrated in Figure 3, where a Tiered Vector of fixed subarray size 4 is expanded into
a Vector of subarray size 8. From the Expand operation we see that n always lies between %lQ and /2. Since
insertion takes O(l) operations and n is O(I?), this implies that insertion takes O(y/n) time.

Insertion requiring an erpand operation, however, takes O(n) time since we are forced to reorder n
elements in the process of creating S. However, we can show that the amortized time for insert is O(y/n) by
using the accounting method as described by Goodrich and Tamasia [7].

Theorem 2 Insertion into a Tiered Vector takes amortized time O(y/n).

We shall assign each reorder operation a debit of 1 for each element so reordered. Thus the total cost of

a reorder operation is a debit of n. For each insert operation we assign a credit of 2. Since we only perform

an Fxpand after we have made % inserts it is apparent that after O(n) operations we have completely paid

for the cost of the expansion.

procedure RemoveElemAtRank(r)
if r > number of elements or r < Othen

procedure InsertElemAtRank(r,e)
if r > number of elements or r < 0 then

error “Index Out of Bounds”
if number of elements > maz space
Ezpand
sub « [r/l|
end « |n/l|
if sub < end then
head < removeLast(Ssup)
tail < null
i+ sub+1
foreach S;,i < end
tail < removeLast(S;)
insertFirst(S;,head)
head + tail
1+ 1+1
insertFirst(Senq,head)
r" ¢+ (hsup +) mod |
if hgup = 0 or ' < hgyp then
Slide all elements in S,,; of rank

greater than or equal to ' and less
than (|Ssus| — ') mod I to the right

by one
else
Slide all elements in S, of rank less

than r' and greater than or equal to

hsup to the left by one
Ssup[r'] + €

Code 2a: insertElemAtRank

3.3 Element Deletion

Deletion is simply the reverse of insertion and uses
a similar Pop-Push and Shift process. Again, we
first determine in which subarrays the elements at
rank r and rank n — 1 are located and term these
subarrays Sgup and Seng. Then for each pair of
subarrays, S; and S;;1, sub < i < end, we will pop
the head of S;+1 and push it onto the tail of S;.
Since this process is simply the reverse of insert’s
Pop-Push phase, we are guaranteed a maximum
of O(l) operations.

During the second phase we again perform the
opposite of insert’s Shift phase. After popping the

rank r element from Ss,; we shift a maximum of

I — 1 elements to the left or right to close the space vacated by the removed element. Since S, contains at

error “Index Out of Bounds”
if number of elements < %mazc space
Contract
sub + [r/l]
end « [n/l]
" < (hsup + 1) mod !
ret < Ssup[r']
head + null
tail < null
if top < end then
i+ end
foreach S;,i > top
head < removeFirst(S;)
insertLast(S;,tail)
tail < head
14 1—1
if hgup =0 or 7' < hgyp then
Slide all elements in S,,; of rank 7' +1
t0 hgup + |Ssus| to the left
else
Slide all elements in S of rank
greater than or equal to hgyp, and less
than ' to the right by one
hsub — hsub +1
return ret

Code 2b: removeElemAtRank

procedure compress()

'+ 31
S’ «+ new set of arrays of size I’ where each
array S} in &' is of size I'

foreach S; in S
realign rank order in S; to match indices
S4; < ranks 0,1,...,1(1—1)in S;
Shiy1 < ranks 20, L(1+1),...,lin S;
hy; <0
hyip1 <0

S+ 8

L«

Code 4: compress

most [elements, this operation takes O(l) time. The implementation of delete is in code segment 2b.

A special case of delete occurs when the number of elements remaining in the Tiered Vector equals élz.
At this point we must reduce the size of the Tiered Vector inorder to preserve the O(y/n) time bounds for
both insert and delete. We first reset the fixed length [to I’ < %l and then create a new set of I’ subarrays,
S’ where the first 31’ elements of S’ are the result of a rank reordering and splitting of each full subarray in

S. This procedure in demonstrated in code segment 4.

It should be noted that we don’t call compress when |S| equals 1. Instead we follow a method suggested
by Boyer [3] so that after a compression %l2 inserts must be made before an expansion is required. If, instead
we had chosen to compress at |S| equal to the new Tiered Vector would have all its slots filled and a single

insert operation would cause another expansion.

So S1 Sa
|0I2I3I4||5I6I7I8||2I10I11I12|| |

ho hl h2
So Si Sa Ss
(ol2]3]af[5][6][7[8][9]r0]1a]12][[|
- 5 L5
2 3 4 8 12
SO Sl SQ S3
[0]1]2]3][s5][6][7[a][9]10]11]8 |[12]
ho hy hy hs
Fig 2. Insertion of element 1 at rank 1
So Si S S3
[2]3]of1][s5][6]7[a][11][8]09]10][12]
ho h1 ho hs
S(] Sl

[oJ1]2[3]a]s]6]7][8]9]10]11]12]13]

ho h1

Fig 3. Expansion and reordering of a Tiered Vector after a call to Ezpand

4 Tests

4.1 Access Test

In the test below one hundred random elements where accessed from both the Java Vector and the Tiered
Vector.

100

T

i + Tiered Vector

rg 80 o Java Vector -
i

n

m 60 -
i

1

|

i 40 N
S

e

c

0

n

d

S

0 | | | |
0 2000 4000 6000 8000 10000

Number of Elements in Vector

4.2 Insertion Test

In the test below one hundred elements where inserted at the head (rank 0) of both a Java Vector and the
Tiered Vector. “Number of Elements” indicates the number of elements contained in either Vector prior to
insertion.

1400 : :

+ Tiered Vector
1200

¢ Java Vector
1000

800

600

400

200

(IJQ..ISOO(‘DUJH-'—"—“—'-Z == CDBH-H

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of Elements in Vector

4.3 Deletion Test

To be submitted later.

5 Acknowledgements

We would like to thank Rao Kosaraju and Roberto Tamassia for several helpful comments regarding the
topics of this paper.

References

[1] R. Bayer and C. McCreight. Organization and Maintenance of Large Ordered Indexes. Acta Inf. v.1,
3(1972), 173-189.

[2] R. Bayer and K. Unterauer. Prefix B-Trees. ACM Trans. Database Syst. 2, 1(March 1977), 11-26.

[3] John Boyer. Algorithm Alley: Resizable Data Structures. Dr. Dobb’s Journal, 23(1), p.115-116,118,129,
January 1998.

[4] Aviezri Fraenkel, Edward Reinglod, and Prashant Saxena. Efficient management of dynamic tables.
Information Processing Letters. v.50, 25-30, 1994.

[5] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-
Wesley, Third edition, 1997.

[6] Donald E. Knuth. Sorting and Searching, wolume 3 of The Art of Computer Programming. Addison-
Wesley, Third edition, 1998.

[7] Michael Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. John Wiley & Sons,
1998.

[8] Per-Ake Larson. Dynamic Hash Tables. Communications of the ACM, 31(4), April 1988.

[9] Edward Sitarski. Algorithm Alley: HATs: Hashed Array Trees. Dr. Dobb’s Jounral, 21(11), September
1996.

[10] H. Wedekind. On the Selection of Access Paths in a Database System. Proc. IFIP Working Conf. Data
Base Management. North-Holland Publishing Co., New York, 1974.

