
Analysis Clinic

November 2015

1 Useful References

1.1 Notes

The most important part of your analysis is not your final answer, but your
reasoning! Even with the correct runtime complexity, you need to show why
it is correct. Remember to use functional notation and to define what your
variables mean; for example: O([b→ b2]) where b is the length of the input list.

We’ve included some links about Latex, which is a markup language to help
you format mathematical expressions. ShareLatex is an online text editor that
lets you write documents in Latex (which you may find helpful when writing up
your solutions to Amortized). If you take the time to learn it now, you’ll find
your life much easier in future classes!

1.2 Readings and Resources

Chapter on “Halloween Analysis”:
http://papl.cs.brown.edu/2015/amortized-analysis.html

“Amortized Analysis Explained”:
https://www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained_

Fiebrink.pdf

1.3 Latex

ShareLatex: https://www.sharelatex.com/

Essential Latex: http://for.mat.bham.ac.uk/R.W.Kaye/latex/el2e.pdf

Latex Symbols:
http://cs.brown.edu/about/system/managed/latex/doc/symbols.pdf

1

http://papl.cs.brown.edu/2015/amortized-analysis.html
https://www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained_Fiebrink.pdf
https://www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained_Fiebrink.pdf
https://www.sharelatex.com/
http://for.mat.bham.ac.uk/R.W.Kaye/latex/el2e.pdf
http://cs.brown.edu/about/system/managed/latex/doc/symbols.pdf

2 Analysis Warm-up: Reverse

In class, we discussed that we could use reverse for our queue structure. We
agreed that we could take linear time to reverse a list, but not all implementa-
tions of reverse take linear time! Determine the worst-case runtime complexities
of the following two implementations of reverse. Once you’re done, can you write
a new version of reverse that performs better (i.e. its runtime decreases less
rapidly with an increase in the length of the list)? Justify your solution with an
analysis.

2.1 First Implementation of Reverse

fun reve r s e<A>(l s t : : L i s t<A>) −> List<A>:
doc : ” Reverses a l i s t , l s t ”
ca s e s (L i s t) l s t :
| empty => empty
| l i n k (f , r) => r e v e r s e (r) + [l i s t : f]

end
where :

r e v e r s e (empty) i s empty
r e v e r s e ([l i s t : 1 , 2 , 3]) i s [l i s t : 3 , 2 , 1]
r e v e r s e ([l i s t : 1 , 2 , 3 , 4 , 5]) i s [l i s t : 5 , 4 , 3 , 2 , 1]

end

2.2 Second Implementation of Reverse

fun reve r s e<A>(l s t : : L i s t<A>) −> List<A>:
doc : ” Reverses a l i s t , l s t ”
ca s e s (L i s t) l s t :
| empty => empty
| l i n k (,) =>

r eve r s e−help (l s t , l s t . l ength () − 1)
end

where :
r e v e r s e (empty) i s empty
r e v e r s e ([l i s t : 1 , 2 , 3]) i s [l i s t : 3 , 2 , 1]
r e v e r s e ([l i s t : 1 , 2 , 3 , 4 , 5]) i s [l i s t : 5 , 4 , 3 , 2 , 1]

end

fun reve r s e−help<A>(l s t : : L i s t<A>, n : : Number) −> List<A>:
doc : ‘ ‘ ‘

Creates a l i s t o f a l l the e lements in non−empty
l i s t l s t b e f o r e p o s i t i o n n in r e v e r s e order
‘ ‘ ‘

2

i f n == 0 :
l i n k (l i s t s . get (l s t , n) , empty)

e l s e :
l i n k (l i s t s . get (l , n) , r eve r s e−help (l , n − 1))

end
where :

r eve r s e−help ([l i s t : 1 , 2 , 3 , 4 , 5] , 4) i s [l i s t : 5 , 4 , 3 , 2 , 1]
r eve r s e−help ([l i s t : 1 , 2 , 3 , 4 , 5] , 2) i s [l i s t : 3 , 2 , 1]
r eve r s e−help ([l i s t : 1 , 2 , 3 , 4 , 5] , 0) i s [l i s t : 1]

end

3 This Is Halloween (Analysis)

After you’ve collected your haul from trick-or-treating, you’d like to analyze the
candy you collected from around the neighborhood. You noticed that there was
a linear relationship between house addresses and the amounts of candy people
gave out. In particular, house k gave k candies. We can say that the function
mapping house number to candy is in the family O([k → k]), where k is the
house number.

Let h be the total number of houses you visited, and assume that the house
numbers were 1, 2, 3, . . . h. What was the amortized candy-per-house?

Suppose instead that the relationship between house address and amount of
candy was quadratic. In particular, house k gave k2 candies. What was the
amortized candy-per-house?

What do you notice about the relationship between the mapping (address →
candy) and the amortized complexity?

4 Worked Example of Amortized Analysis

Because you want to see some real world examples of amortized analysis, you
realize that the best way to manage your Halloween candy is to store it as a
queue. Remember that a queue is a first-in-first-out (FIFO) data structure, so
the first element you enqueue is the first to be dequeued. One way to implement
a queue is with two lists, a head and a tail. Lists are last-in-first-out (LIFO)
structures. You decide that the tail will simply keep track of the candies as
they are enqueued (in LIFO order), but the head will be reversed to mimic the
queue’s FIFO order. On a list, you have the operations first, rest, link, and
is-empty. Assume that each of these has a cost of 1.

Specifically, you implement the operations for your queue as:
enqueue(candy): link the candy to the tail

3

dequeue(): if the head is empty, then for each element in the tail, take the
first candy from the tail and link it with the head. This has the effect of re-
versing the candies in the tail and storing them in the head. Finally, return the
first candy of the head.

For a more detailed (and Pyret-specific) description of this strategy, refer to
the “Halloween Analysis” chapter. It is a helpful exercise to understand why
this implementation results in the correct functionality of a queue!

If you were doing a conventional runtime analysis, you might argue that de-
queuing takes time in the family O([k → k]), where k is the number of candies
in the queue. In the worst case, any given dequeue operation might require
moving all of the candies from the tail to the head. Therefore, the worst-case
time of any operation is the time it takes to reverse, which is linear in the length
of the list, or the number of candies in the queue. In practice, however, you
only need to perform the transfer from the tail to the head if the head happens
to be empty. You get a more interesting picture if you consider the amortized
cost per operation.

Problem: If you perform k enqueues followed by k dequeues, what is the
amortized complexity per operation?

Solution: Each of the enqueues takes one step, linking a candy to the tail.
On the first dequeue, the head is empty, so transferring candies from the tail to
the head takes steps proportional to the k elements in the tail. For the rest of
the k − 1 dequeues, all k candies have already been moved to the head in the
proper order. Thus, the rest of the k−1 dequeues each take two steps, checking
if the head is empty and then returning the first candy in the head.

The total number of steps is 1 + 1 + . . . + 1 (k times) for the enqueues, k
for the first dequeue, and 1+1+ . . . +1 (k−1 times) for the last k−1 dequeues.
Hence, the total is k+k+ (k−1) = 3k−1 steps. Because these 3k−1 steps are
spread out over 2k operations (k enqueues and k dequeues), the amortized cost
per operation is 3k−1

2k , which is in the family of constant functions. Therefore,
the amortized complexity per operation is in the family O([k → 1]), where k is
the number of enqueues and dequeues.

5 Trick or Treat

5.1

Suppose we define a new operation, trick-or-treat, as follows. Note that
trick-or-treat requires there to be x candies in the queue before it is called.

4

trick-or-treat(x):
dequeue x candies from the queue
enqueue 1 candy into the queue

If you perform a sequence of m trick-or-treats, what is the amortized cost
per trick-or-treat? What is the total cost of the sequence of m operations?

6 Counting Candy

6.1

Now you’d like to count the Halloween candy you collected, and you decide it’ll
be a great idea to do so using a binary counter. You’ll store this counter in an
ordered collection S of stone tablets with a ”1” on one side and ”0” on the other,
so that each element in S can be thought of as a digit of the binary number
(either 0 or 1). All of the elements on the tablets initially start at 0, and at each
step, you just need to increment the counter by 1. Stone tablets are heavy, and
flipping one costs a fixed unit of work.

For example, incrementing (0 → 1) costs 1, (01 → 10) costs 2, (10 → 11)
costs 1, (011 → 100) costs 3, (100 → 101) costs 1, (101 → 110) costs 2, and so
on. Note that whenever the number of digits changes, the leading digits are all
initially 0, so you never need to go out and collect more stone tablets.

What is the worst-case cost per increment? What is the amortized cost per
increment?

6.2

Define Si to be the ith tablet in your collection (which is zero-indexed). Imagine
a version of the counter we just discussed in which it costs 2k to flip the bit Sk.
For example, incrementing (0→ 1) costs 1, (01→ 10) costs 3 (1 for S0 and 2 for
S1), (10 → 11) costs 1, (011 → 100) costs 7, (100 → 101) costs 1, (101 → 110)
costs 3, and so on.

What is the worst-case cost per increment? What is the amortized cost per
increment? Remember that log2 2k = k.

5

	Useful References
	Notes
	Readings and Resources
	Latex

	Analysis Warm-up: Reverse
	First Implementation of Reverse
	Second Implementation of Reverse

	This Is Halloween (Analysis)
	Worked Example of Amortized Analysis
	Trick or Treat
	

	Counting Candy
	
	

