
cs019 Accelerated Introduction to Computer Science Krishnamurthi

Lab 1: Higher-Order Functions
October 15, 2016

Contents

1 Labs in cs019 1

2 What Is a Higher-Order Function? 2

3 Map 3

4 Filter 4

5 Fold 5

6 Map2 7

7 Creating Your Own: Maximizing Revenue 8

8 An Important Final Note 9

Objectives

By the end of this lab, you will:

• know how labs work in cs019

• understand that functions can be treated as first-class citizens (and what that
means)

• learn the names of several common higher-order functions, implement them, and
practice using them

• be able to write your own higher-order functions

1 Labs in cs019

There are a few important lab policies to keep in mind in cs019:

• All labs, unless otherwise specified, should be completed in pairs (if there are an
odd number of students, a group of three may be formed).



cs019 Lab 1: Higher-Order Functions October 15, 2016

• Partners should take turns using the keyboard, with each turn lasting around 15
minutes.

• You cannot work with the same person for more than one lab.

• You must get checked off by a TA at each checkpoint before moving on to the
next section (no skipping ahead).

• In order to pass a checkpoint, relevant code must be fully functional and be
augmented with docstrings and sufficient test cases. Some functions may have
additional implementation-specific requirements.

• If you are unable to make your assigned lab section for a given week, you must
email the head TAs by the preceding Saturday at 11:59pm (exceptions granted
for emergency circumstances).

• If you do not finish a lab during your assigned lab section, you must finish it
(either independently or with your partner(s)) and get it checked off during TA
hours (of any TA) within a week of your section in order to receive full credit.

• During TA hours, there will be a ”lab checkoff line” separate from the normal
question line. You must use this if you’re getting checked off for a lab, but can
only use it for this purpose. If you have both a lab checkoff and a normal question,
you must put yourself in both queues.

Labs are graded under the following criteria:

• If the lab is completed during section or checked off within a week it is given full
credit.

• If the lab is started but not completed during section (and not checked off within
a week) it is given half credit.

• If you’re more than 20 minutes late for your lab section you are only eligible to
receive half credit, and must complete the lab in order to receive said credit.

• If you do not show up for section you will receive no credit.

2 What Is a Higher-Order Function?

So far, you have seen all sorts of functions that input and output Numbers, Strings,
and Lists. Did you know that the functions themselves can be passed as inputs and
outputs? For instance, a function may take both a Number and another function as
parameters, and use them both to generate some output:



cs019 Lab 1: Higher-Order Functions October 15, 2016

fun fun-plus-one(num :: Number, func :: (Number -> Number)) -> Number:

func(num) + 1

end

Because functions can be passed and produced in the same way as other data types
(like Numbers, Strings, and Lists), functions can be referred to as “first-class citizens.”

A higher-order function is a function that either consumes a function as input, produces
a function, or both. In the example above, fun-plus-one is a higher-order function
because it accepts a function as a parameter. In this lab, we will focus exclusively on
higher-order functions that consume other functions.

Note: Data types like Number, String, and List are “first-class citizens” too.

3 Map

Say that you have a list of the temperatures in Providence for every day in August.
The temperatures were measured in degrees Fahrenheit, but you want to report them
in degrees Celsius. With the same data, you want to report each day as “too hot” if
the temperature is above 90 degrees Fahrenheit, “too cold” if the temperature is below
70 degrees Fahrenheit, and “just right” otherwise.

check:

f-to-c([list: 131, 77, 68]) is [list: 55, 25, 20]

goldilocks([list: 131, 77, 68]) is

[list: "too hot", "just right", "too cold"]

end

Task: Implement these two functions, called f-to-c and goldilocks, respectively,
without using map. Be sure to write function annotations and test cases for each. Each
person in your pair should type for one of these. The formula for converting degrees
Fahrenheit, F, to degrees Celsius, C, is C = 5

9
(F − 32)

What you might find with your implementations of these functions is that they have
seemingly important commonalities. In particular, in each, you probably recurred
through the list of temperatures, and transformed each following some procedure. Even
though the procedure used for transforming each element of the list varied between the
two functions, there was probably a lot of reused code in your implementations.

It is tedious to write a unique recursive implementation for each function like this that
you use in your code (as you may have found working through Nile so far!). Even more
important, code like this is more verbose and more difficult to read than it could be.



cs019 Lab 1: Higher-Order Functions October 15, 2016

It’d be ideal to abstract out the common structure and draw attention to just the inner
procedure. As you may have guessed (or known), this is where higher-order functions
(HOFs) come in! In particular, the HOF map can be used to implement f-to-c and
goldilocks.

Map is a higher-order function for lists. Given a list, l, of elements of some type
T, and a function f (called the functor) that operates on an input of the same type T,
map produces a list of the same length, where each element is the output of applying
the functor f to the corresponding element in l.

Here’s how f-to-c could have been written using map, shown without their doc strings
and test cases for brevity:

fun f-to-c(f-list :: List<Number>) -> List<Number>:

map(lam(f): 5/9 * (f - 32) end, f-list)

end

Task: Implement goldilocks with map. Hint: You may not want to use the lambda
notation here.

Note: If you need a refresher on Pyret’s lambda notation for anonymous functions,
check out the documentation

Note: There is a shorthand syntax for lambdas in Pyret that you may prefer. Wher-
ever you would write lam(<parameter list>): <function body> end, you can in-
stead write {(<parameter list>): <function body>}. For example, we can write
the sum function as {(a, b): a + b}.

Task: Now, to prove your understanding of the map function, write your own imple-
mentation of it. Name your implementation my-map. Use the map documentation as a
guide. Feel free to use the two functions that you wrote earlier for two of your test cases.

? Before continuing, call over a TA to check your work so far.

4 Filter

Map is not the only higher-order function that will be useful to you in cs019. We will
learn some others, starting with Filter. filter works just like a filter in the real world:
some things can pass through, but others cannot. For a list l of elements of some type
T, you specify which elements can pass through by supplying a function (the predicate)
that consumes elements of type T and produces a Boolean. If the predicate applied to
an element is false, then that element is filtered out, and if its value is true, then that

https://www.pyret.org/docs/latest/lists.html#%28part._lists_map%29
https://www.pyret.org/docs/latest/Expressions.html#%28part._s~3alam-expr%29
https://www.pyret.org/docs/latest/lists.html#%28part._lists_map%29
https://www.pyret.org/docs/latest/lists.html#%28part._lists_filter%29


cs019 Lab 1: Higher-Order Functions October 15, 2016

element is kept in the output list.

Below is an example of how you could use filter to get only the positive numbers
in a list of numbers.

check:

lon = [list: -1, 6, -2, 5, 7, 0, -4]

filter(lam(num): num > 0 end, lon) is [list: 6, 5, 7]

end

Below are function headers for two other functions that can be implemented using
filter. tl-dr eliminates all lists in lol whose lengths are greater than length-thresh.
eliminate-e eliminates all Strings from words that contain the letter e.

fun tl-dr<T>(lol :: List<List<T>>,

length-thresh :: Number) -> List<List<T>>:

fun eliminate-e(words :: List<String>) -> List<String>:

Task: Implement the two functions above using filter. As in Nile, you may not
use any String built-ins except string-to-code-point(s). Hint: one way to implement
eliminate-e involves using filter twice.

Task: Write your own implementation of the filter function. Name your imple-
mentation my-filter.

? Before continuing, call over a TA to check your work so far.

5 Fold

Fold, sometimes called reduce, is a higher-order function that is used to combine the
elements of a list into a single value. Let’s look at the type signature to break down
the different parts:

fun fold<T1, T2>(f :: (T2, T1 -> T2),

base :: T2, lst :: List<T1>) -> T2:

fold applies a procedure, f (referred to as the folder), to combine each element of the
input list, lst, into one value of type T2. f takes two parameters: the result so far
(the accumulator) and the current element of the list, beginning with base and the first
element of the list.

https://www.pyret.org/docs/latest/lists.html#%28part._lists_fold%29


cs019 Lab 1: Higher-Order Functions October 15, 2016

Perhaps a simple example will make things more clear. Suppose we want to find the
sum of the elements of a list of numbers. Our list lon will be our list of numbers; our
folder f will be the addition function, which takes in two numbers and computes their
sum; and our base value will be 0 (do you see why?).

Here is that example written in code, with lon as our list of numbers.

check:

lon = [list: 7, 3, 2]

fold(lam(acc, cur): acc + cur end, 0, lon2) is 12

end

Table 1: Step-by-step Execution
acc cur f(acc, cur)

0 7 7
7 3 10
10 2 12

This use of fold begins by invoking the folder function with the base (0) as the initial
acc (accumulator) and the first element of the list (7) as the cur (current). Then the
output of that first invocation (7 + 0 = 7) becomes the accumulator in the next step
and the next element in the list becomes the current. . . and so on.

Now we’re going to look at a similar example of how to use fold:

fun add-boolean(acc :: Number, cur :: Boolean) -> Number:

if cur:

acc + 1

else:

acc

end

end

check:

attempts = [list: true, false, false, true]

fold(add-boolean, 5, attempts) is 7

end

Table 2: Step-by-step Execution
acc cur add-boolean(acc, cur)

5 true 6
6 false 6
6 false 6
6 true 7



cs019 Lab 1: Higher-Order Functions October 15, 2016

Note that the data type of the output is different from the data type of the input list
and how the folder add-boolean handles this. Also note that we started with a base

of 5, which became the initial accumulator.

Below are function headers for two other functions that can be implemented using
fold.

list-product computes the product of all of the elements of a list of numbers, and
list-max finds the maximum number in a list of numbers.

fun list-product(lon :: List<Number>) -> Number:

fun list-max(lon :: List<Number>) -> Number:

Task: Implement the two functions above using fold.

Task: Write your own implementation of the fold function. Name your implementa-
tion my-fold.

? Before continuing, call over a TA to check your work so far.

6 Map2

In situations where you have two lists of the same length and for all indices i, the ith
element of one list corresponds to the ith element of another list of the same length
(say, for example, they’re two different columns from the same Table), you may find
that you want to recur through them simultaneously, applying the same procedure to
each pair of corresponding elements. As a simple example, suppose you have two lists:
one is a list of nouns, noun-list, and the other is a list of adjectives that describe
those nouns respectively, adj-list. You want to produce a list of the nouns with their
descriptions. This can easily be done with Pyret’s built-in map2 function with the code
below.

check:

noun-list = [list: "kitten", "puppy", "student"]

adj-list = [list: "fluffy", "ugly", "smart"]

map2(lam(n, a): a + " " + n end, noun-list, adj-list)

is [list: "fluffy kitten", "ugly puppy", "smart student"]

end

Now you try. Suppose that you’re teaching a class, and you want to write a program to

https://www.pyret.org/docs/latest/lists.html#%28part._lists_map2%29


cs019 Lab 1: Higher-Order Functions October 15, 2016

determine whether or not each student has passed the class. You have two lists of data,
score and extra-credit. score has, for each student, a Number corresponding to
their final score in the class. extra-credit has, for each student, a Boolean indicating
whether or not they completed an extra credit activity. The lists are parallel, meaning
that the ith student in score is the same student as the ith student in extra-credit.
A student passes the class if they have a score of over 75, or if they have a score of
over 65 and completed the extra credit. You want to have a list that stores, for each
student, a Boolean indicating whether or not they passed the class.

Task: Using map2, implement the function who-passed, which will take the lists score
and extra-credit and produce the desired list.

Note: Another way to do this is to create your own Student structure that contains
the relevant data for a single student and then map over a list of Students. All the
same, implement using map2 here.

Task: Write your own implementation of the map2 function. Name your implementa-
tion my-map2.

Note: The analogous map3 and map4 are also built in to Pyret.

? Before continuing, call over a TA to check your work so far.

7 Creating Your Own: Maximizing Revenue

So far, we’ve seen a few of the higher-order functions built into Pyret’s List library.
But that’s just the tip of the higher-order function iceberg; recall that any function
that takes in another function as input is a higher-order function. There are cases in
which you might want to write your own higher-order function to make your code more
general. Here we explore one of those examples.

A firm (which, for simplicity, sells only one good) wants to maximize its revenue, the
amount of money that it receives from customers. It faces a trade-off: if the firm in-
creases the price of the good, fewer customers will buy it, but the firm will receive more
money for each good sold. However, if the firm decreases the price of the good, more
customers will buy it, but the firm will receive less money for each good sold.

This trade-off is formalized by a demand function, which maps the price of a good
to (an approximation of) the total quantity of that good that people will buy.



cs019 Lab 1: Higher-Order Functions October 15, 2016

Figure 1: A simple demand function

In a typical demand function, the quantity decreases as the price increases, because it
is usually the case that fewer people are interested in purchasing a more expensive item.

Task: Write a higher-order function, best-price, which takes in a demand function
and a list of potential prices and computes the optimal price, the price that will yield
the greatest revenue.

Note: revenue = price * quantity demanded

Imagine how you would write best-price if you didn’t use a higher-order function.
You wouldn’t be able to take the demand function as an input, so you would proba-
bly have to hard-code it in and then change your code when the market changes or
when you need it for a different good (with a different demand function). Since we
wrote best-price as a higher-order function, though, we avoided this. This is what
we mean when we say that higher-order functions allow you to write more general code.

8 An Important Final Note

As we’ve seen, higher-order functions are useful to abstract out repetition in code and
to make your code more general. Often, they also make your code easier to read, but
not always! When you write code, make sure to prioritize readability, and try to use
higher-order functions only if they make your code easier to understand. Keep this in
mind, and use your best judgment. Still, feel free to experiment in this class. We TAs
will help you by pointing out if your code is difficult to read.

? Once a lab TA signs off on your work, you’ve finished the lab! Congratu-
lations! Before you leave, make sure both partners have access to the code



cs019 Lab 1: Higher-Order Functions October 15, 2016

you’ve just written.


	Labs in cs019
	What Is a Higher-Order Function?
	Map
	Filter
	Fold
	Map2
	Creating Your Own: Maximizing Revenue
	An Important Final Note

