
cs019 Accelerated Introduction to Computer Science Krishnamurthi

Lab 4: Queues and Priority Queues
November 5, 2016

Contents

1 What Is a Queue? 1

2 Implementing Queues 3

2.1 A Naive Implementation . 3

2.2 A More Efficient Implementation . 3

3 What Is a Priority Queue? 4

4 Implementing Priority Queues 5

4.1 Sorted List . 6

4.2 Heap . 6

4.2.1 Background . 6

4.2.2 insert . 8

4.2.3 remove-min . 9

Objectives

By the end of this lab, you will:

• understand what a queue is and how it differs from a list.

• be able to implement queues using lists.

• understand priority queues.

• write an efficient implementation of priority queues using heaps.

Note: Much of this lab is adapted from Programming and Programming Languages
(2016): Chapter 13, Halloween Analysis.

1 What Is a Queue?

We have already seen lists and sets. Now let’s consider another fundamental computer
science data structure: the queue. A queue is a linear, ordered data structure, just

cs019 Lab 4: Queues and Priority Queues November 5, 2016

like a list; however, the set of operations they offer is different. In a list, the tradi-
tional operations follow a last-in, first-out discipline: .first returns the element most
recently linked. The first element that we link to a list is the one that is hardest to get
back, since we must traverse the entire list. In contrast, a queue follows a first-in, first-
out discipline. The first element that is added to a queue will be the easiest to get back.

Let’s introduce a pair of images that will help you think about the difference between
lists and queues. A list can be thought of as a stack of heavy blocks. Adding or remov-
ing blocks from the middle or the bottm of the stack is hard, because we have to lift up
the blocks on top first. With that in mind, we add and remove blocks only at the top
of the stack. So at any point in time, the easiest block to remove is the last one that
was added. The last in is the first out. A queue, on the other hand, can be thought of
as the line at TA hours: the first people to enter the line are the first to receive help.
The first in is the first out.

The two primary operations that we want to support with a queue are enqueue, which
will add an element to the queue, and dequeue, which will take the next element off
the queue, giving us both that element and the resulting shorter queue. Let’s lay those
down more precisely with some Pyret code.

data Queue<T>:

we’ll figure out this definition later

end

fun enqueue<T>(q :: Queue<T>, elt :: T) -> Queue<T>

data Dequeued<T>:

| none-left

| elt-and-q(e :: T, r :: Queue<T>)

end

fun dequeue<T>(q :: Queue<T>) -> Dequeued<T>

Notice that because we want dequeue to give us two different pieces of information,
we defined a new datatype, Dequeued, with those two parts. none-left will be the
output of dequeue when the input is an empty queue. elt-and-q for queues is simi-
lar to link for lists, in that we can use it to operate on the first-in and rest of the queue.

cs019 Lab 4: Queues and Priority Queues November 5, 2016

2 Implementing Queues

2.1 A Naive Implementation

Task: With your lab partner, come up with two different ways to implement the queue
operations using a single list to represent a queue. For each of the two ways, give the
big-O set for the worst-case runtime for each function in terms of the number of ele-
ments in the queue. There is no need to write any code for this problem, but you may
do so if it helps you. (Hint: Be careful with the order of the list. Make sure that your
implementation is actually a queue, following a first-in, first-out discipline.)

? Before continuing, call over a TA to check your work so far.

2.2 A More Efficient Implementation

As you may have guessed, we can do better. Observe that if we represent the queue
as a list, with the most recently enqueued element first, then enqueuing is cheap (con-
stant time). In contrast, if we represent the queue as a list in the reverse order, then
dequeuing is constant time. That is why it makes sense to use two lists: one to which
enqueuing takes constant time, and another, in reverse order, from which dequeuing
takes constant time. We will call those two lists enqueue-to and dequeue-from, re-
spectively.

Task: Use this stencil code to fill in the data definition for Queue.

Question: Keeping all of the elements in both enqueue-to and dequeue-from is not
time-efficient. Why?

Answer: If we do that, then we would need to update enqueue-to when we dequeue
and dequeue-from when we enqueue, both of which will always take time linear in the
number of elements in the queue. That’s worse than using just one list!

So, we’ve learned that we absolutely can’t enqueue elements onto dequeue-from or
dequeue elements from enqueue-to if we want to have an efficient implementation of
queues. So, in order to support enqueue and dequeue, we must enqueue only onto
enqueue-to and dequeue only from dequeue-from.

https://code.pyret.org/editor#share=0B15X1zsBYb5jcTRDNHh3bVFzOXc&v=0d82ca6

cs019 Lab 4: Queues and Priority Queues November 5, 2016

Question: What problem are we going to run into if we only enqueue to enqueue-to

and dequeue from dequeue-from without doing anything else?

Answer: When we enqueue elements, they will be put on enqueue-to, but when we
try to dequeue those same elements, they will still be in enqueue-to, so we won’t be
able to dequeue them from dequeue-from as we would like to.

In order to solve this problem, we need to move elements from enqueue-to to dequeue-from
at some point, by calling a function that we’ll name requeue.

Task: In the same stencil code as before, implement requeue.

Task: Analyze the worst-case runtime of requeue as a function of the number of
elements in the queue.

? Before continuing, call over a TA to check your work so far.

This seems like bad news, since we can’t requeue in constant time if we want to main-
tain the first-in, first-out order of the queue. However, we’re still better off than we
were in the naive implementation. In the naive implementation, one of operations
took a linear amount of time in the number of elements every time we called it. By
contrast, if we’re careful about when we use requeue when implementing enqueue and
dequeue, then when the queue is large, we won’t have to call requeue very often at all.

Task: Implement enqueue and dequeue in the same stencil as before. Determine the
big-O set of the worst-case runtime of each function. Note that we are not asking for a
formal analysis.

Note: You will likely find that your conclusion above is unsatisfying, particularly be-
cause the worst case is predictably rare. In lab 6, we will see a form of runtime analysis,
called amortized analysis, that is much more informative in this case.

? Before continuing, call over a TA to check your work so far.

3 What Is a Priority Queue?

So far, we’ve seen that lists are first-in, last-out; and queues are first-in, first-out. But
what if we want the next element out to be based on an arbitrary ordering of elements?
Suppose, for example, that we have a collection of numbers, and we want to be able to

cs019 Lab 4: Queues and Priority Queues November 5, 2016

easily take out the minimum number at any point in time. Then, we use a priority
queue.

You can think of a priority queue as a queue, except that each element is associated with
a priority number. The purpose of the priority number is that when we “dequeue” a pri-
ority queue, we take the element with the highest priority (not necessarily the one that
was enqueued first). The main operations that we want a priority queue to support are
insert-with-priority, which is analogous to enqueue, and get-highest-priority

and remove-highest-priority, which are jointly analogous to dequeue. They are
written in Pyret code below:

data PriorityQueue<T>:

one of many possible data definitions (more on this later)

end

fun insert-with-priority<T>(elt :: T, p :: Number,

pq :: PriorityQueue<T>) -> PriorityQueue<T>:

doc: "Inserts elt into pq with priority p"

end

fun get-highest-priority<T>(pq :: PriorityQueue<T>) -> T:

doc: "Produces the element in pq with the highest associated prioirty."

end

fun remove-highest-priority<T>(pq :: PriorityQueue<T>) -> PriorityQueue<T>:

doc: ‘‘‘Produces a Priority Queue like pq but with the element with the

highest priority removed.‘‘‘

end

4 Implementing Priority Queues

Before we continue, let’s simplify things a bit. In what follows, we consider only a
special case of priority queues (PQs), with the following specifications:

1. The PQ contains only numbers

2. The priority of each number in the PQ is the number itself multiplied by -1 (so
the minimum number has the highest priority)

In this special case, we will give the operations above more appropriate names: insert,
get-min, and remove-min, respectively. It will be less messy to consider just this special
case, and once you understand how to implement it, generalizing it should be fairly easy.

cs019 Lab 4: Queues and Priority Queues November 5, 2016

4.1 Sorted List

Our PQ could be a list, sorted in ascending order.

Task: How could we write insert, get-min, and remove-min using a sorted list? De-
termine the big-O set of the worst-case runtime of each function as a function of the
number of elements in the PQ.

Note: Generally, the list would be sorted in descending order of priority.

4.2 Heap

The sorted list grants extremely efficient removal, but it is suboptimal when it comes
to insertion. If we would like our PQ to perform sequences of insert and remove-min,
we should instead use a balanced binary heap, which guarantees logarithmic time in
the number of elements for both.

4.2.1 Background

For our purposes, a balanced binary heap is a binary tree that has the following char-
acteristics:

1. The nodes contain numbers.

2. (Order condition) Each node’s number is less than or equal to the numbers of its
children. This means that the minimum number is at the top of the heap.

3. (Balance condition) Each node’s left subtree contains either the same number of
nodes or one node more than the right subtree.

Task: For each of the trees below, state whether it satisfies a) the order condition and
b) the balance condition. Note that “.” is simply a placeholder for the empty node: it
indicates that there is nothing there.

1. 1

2

4 5

3

6 7

2. 1

2

3

4 .

5

6

7 8

cs019 Lab 4: Queues and Priority Queues November 5, 2016

3. 1

5

3

4 .

10

6

7

8 .

9

4. 7

7

7

11 7

11

11

11 11

5. 1

2

4

8 9

5

10 11

3

6 7

6. 1

2

4

8 9

5

10 .

3

6

11 .

7

12 .

Note: A more general heap definition allows the nodes to contain any comparable
values, not necessarily numbers.

Note: These are called min heaps, because the minimum is at the top. As you may
have guessed, it is also possible to have analogous max heaps.

Note: The balance condition that you see here is slightly different from other heap
balance conditions you may see in other contexts.

? Before continuing, call over a TA to check your work so far.

Here’s a stencil code file. We’ve given you the code for get-min and remove-min.
You’re going to implement insert.

https://code.pyret.org/editor#share=0B15X1zsBYb5jR3pFX0hUckY3WDQ&v=0d82ca6

cs019 Lab 4: Queues and Priority Queues November 5, 2016

4.2.2 insert

As you might imagine, this is going to be a structurally recursive procedure on the
input heap, in which the number to be inserted descends down the heap until it finds
its place. The tricky part of this is maintaining the balance invariant in logarithmic
time in the number of nodes. Indeed, you may be thinking to yourself, “In order to
know whether I should insert into the left or right subheap, I need to know how many
nodes are in each so that my insertion doesn’t result in an imbalance. And in order to
know the number of nodes in each subheap, I have to recur through the entire heap,
which will take linear time in the number of nodes...” It is clear from this thought that
we can’t decide the subheap in which to insert by recurring through them. We must
decide immediately where to insert. How can we possibly do that, considering that we
have such limited information about the input heap?

One of the few things that we do know is vital: the input heap satisfies the balance
condition. That means that it takes one of the two forms below:

root

left

n

right

n

root

left

n

right

n - 1

In words, if n is the number of nodes in the entire left subheap, then the number of
nodes in the entire right subheap will be either n or n− 1.

Now, consider what this same picture would look like if we insert a number into the
right half. We are again in one of two cases:

root

left

n

right

n + 1

root

left

n

right

n

We’re not done yet. The case on the left does not meet the balance condition, and we
still don’t know which of the two cases we’re in. But there’s still something fast that
we can do to resolve the issue.

Task: What single thing can we do that will reestablish balance if we’re in the case on
the left or maintain balance if we’re in the case on the right? Call over a TA to help if
you haven’t figured it out after a minute of thinking.

Once you have the insight, keep in mind that an imbalance could occur anywhere along
the path of right children, so you’ll have to rebalance recursively down the right. We’ll
leave it to you to argue that this doesn’t put us over-budget for runtime.

Task: Why did we insert into the right subheap instead of the left?

cs019 Lab 4: Queues and Priority Queues November 5, 2016

? Before continuing, call over a TA to check your work so far.

Task: Now that you’ve figured out the hardest part, implement insert in the stencil
code given. We haven’t told you how to do everything, so you’ll have to fill in some
gaps. Note that we’ve provided an oracle to check whether your code is correct, but
you should still write test cases of your own.

Task: Argue that your implementation of insert takes logarithmic time in the number
of nodes in the heap in the worst case.

? Before continuing, call over a TA to check your work so far.

4.2.3 remove-min

We’ve given you the code of a working solution for remove-min. Your goal in this
section is to understand it. Here is a description of the procedure.

1. Find the leftmost node at the bottom of the heap. Remove it, and store its value
(see amputate-bottom-left in the solution code). Replace the minimum of the
heap, found at the very top, with this value. For example, performing this step
on the heap on the left produces the (improper) heap on the right.

7

8

14 21

13

20 .

14

8

. 21

13

20 .

2. Rebalance the heap by swapping the children of all nodes on the leftmost path, ef-
fectively starting from the bottom and working your way to the top (see rebalance
in the solution code). Performing this step on the left heap below would produce
the one on the right, with the intermediate step shown in the middle.

14

8

. 21

13

20 .

14

8

21 .

13

20 .

14

13

20 .

8

21 .

3. Reorder the heap by “sifting down” the new value at the top. Recursively swap
it with the smaller of the two children until it has reached the bottom of the heap
or all of the values below it are larger (see reorder in the solution code). In the
example that we’ve been using, we just need to swap that top value, 14, once.

cs019 Lab 4: Queues and Priority Queues November 5, 2016

14

13

20 .

8

21 .

8

13

20 .

14

21 .

Task: Did it matter that we chose to remove the bottom-left node, as opposed to other
nodes? If not, what other node(s) could we have removed? If so, why?

Task: To make sure that you understand the remove-min procedure that we supplied,
write a few interesting, diverse, implementation-specific test cases for it. The input
heaps on which you test should have unique structures.

? Once a TA signs off on your work, you’ve finished the lab! Congratulations!
Before you leave, make sure both partners have access to the code you’ve
just written.

	What Is a Queue?
	Implementing Queues
	A Naive Implementation
	A More Efficient Implementation

	What Is a Priority Queue?
	Implementing Priority Queues
	Sorted List
	Heap
	Background
	insert
	remove-min

