
cs019 Accelerated Introduction to Computer Science Krishnamurthi

Lab 4: Streams
October 23, 2016

Contents

1 The Functions of Functions 1

2 Streams from Functions 2

3 Putting the fun in Streams 3

4 Seeing Streams 3

5 Streams - More Examples 4

6 Higher Order Functions of Streams 4

Objectives

By the end of this lab, you will:

• understand the two major purposes of functions.

• be able to represent data using functions.

• better understand higher order functions, and have practice writing them.

Note: This lab is adapted from Programming and Programming Languages (2016):
Chapter 9, Functions as Data.

1 The Functions of Functions

People typically think of a function as serving one purpose: to parameterize an expres-
sion. While that is the most common use of a function, it does not justify having a
function of no arguments, because that parameterizes over nothing at all.

Yet functions of no argument also have a use, because functions actually serve
two purposes: to parameterize, and to suspend evaluation of a block of code until
the function is applied. While we have covered parameterized expressions so far in this
course, in this lab, we will be covering the latter use case: delay without abstraction.

cs019 Lab 4: Streams October 23, 2016

2 Streams from Functions

So far, we’ve written programs that process and create finite sets, trees, and lists. How-
ever, there are many lists (or sequences) in nature that have no natural upper bound:
from mathematical objects (the sequence of natural numbers) to natural ones (the se-
quence of hits to a Web site).
How might we represent an infinite list, like the sequence of natural numbers (e.g. 1, 2,
3, 4...)? Certainly, we could attempt to pick an arbitrary number of natural numbers
as a representative set to use in our programs. For example, we could pick the first five
starting at one:

link(1, link(2, link(3, link(4, link(5, empty)))))

Surely you can see why this might be a problem, no matter what our upper bound is.
Some programs might want more values than the arbitrary amount we decide, and it
would be a pain to try to guess or change that amount when programs start needing
more than we provide. Instead of doing that, let’s write a program to compute the
sequence of natural numbers, so we don’t need to pick an arbitrary end value:

fun nats-from(n):

link(n, nats-from(n + 1))

end

Question: Does this program have a problem? (Hint: Try running it and see what
happens!)

While the nats-from function represents our intent, it doesn’t work: running it cre-
ates an infinite loop for every subsequent natural number. In other words, we want to
write something very like the above, but that doesn’t recur until we want it to, i.e., on
demand. In other words, we want the rest of the list to be lazy.

This is where our earlier insight into functions comes in. A function, as we have just
noted, delays evaluation of its body until it is applied. Therefore, a function would, in
principle, defer the invocation of nats-from(n + 1) until it’s needed.
Except, this creates a type problem: the second argument to link needs to be a list,
and cannot be a function. Indeed, because it must be a list, and every value that has
been constructed must be finite, every list is finite and eventually terminates in empty.
Therefore, we need a new data structure to represent the links in these lazy lists (also
known as streams):

data Stream<T>:

| lz-link(h :: T, t :: (-> Stream<T>))

end

cs019 Lab 4: Streams October 23, 2016

where the annotation (-> Stream<T>) means a function that consumes no arguments
(hence the lack of anything before ->), also known as a thunk. Note that the way we
have defined streams they must be infinite, since we have provided no way to terminate
them.
Now, we can construct a stream of constant values (the number 1 in this case):

rec ones = lz-link(1, lam(): ones end)

Note that the keyword rec is new. Since ones is not defined at the point of defini-
tion, when Pyret evaluates lz-link(1, lam(): ones end), it complains that ones is
not defined. However, it is being overly conservative with our former definition: the
use of ones is “under a lam,” and hence won’t be needed until after the definition of
ones is done, at which point ones will be defined.
Note that in Pyret, every fun implicitly has a rec beneath it, which is why we can
create recursive functions with aplomb.

3 Putting the fun in Streams

Because functions are automatically recursive, when we write a function to create a
stream, we don’t need to use rec. Consider this example:

fun nats-from(n): lz-link(n, lam(): nats-from(n + 1) end) end

with which we can define the natural numbers:

nats = nats-from(0)

Note that the definition of nats is not recursive itself – the recursion is inside nats-from
– so we don’t need to use rec to define nats.

Task: Earlier, we said that every list is finite and hence eventually terminates. How
does this remark apply to streams, such as the definitions of ones and nats above?
Discuss your answer with your partner and jot down some notes.

? Before continuing, call over a TA to check that your answer is right.

4 Seeing Streams

We know how to create streams, like nats and ones, but we still don’t have an easy
way to “see” one.

cs019 Lab 4: Streams October 23, 2016

Task: Using the Stream<T> definition shown above in Pyret, write a function that
returns the h field, or the “head” of the Stream:

fun lz-first<T>(s :: Stream<T>) -> T

Task: Using the same data definition, write a function that returns the “rest” of a
Stream:

fun lz-rest<T>(s :: Stream<T>) -> Stream<T>

The functions you wrote are useful for examining individual values of a stream. It
is also useful to extract a finite prefix of it (of a given size) as a (regular) list, which
would be especially handy for testing.
Task: Write a function that will return a list of the first n elements as given by a
Stream. Don’t forget to write tests – see ones, nats, and nats-from above for good
Streams to test with!

fun take<T>(n :: Number, s :: Stream<T>) -> List<T>

? Before continuing, call over a TA to check that your lz-first, lz-rest,
and take functions are correct.

5 Streams - More Examples

Task: Define a Stream tenths of negative powers of 10. For example, the following
test should pass:

take(3, tenths) is [list: 1/10, 1/100, 1/1000]

Task: Define a function pow2-from(n) that creates a stream of powers of two starting
from any value. Use this to create streams with powers of two starting from 1, 2, and
3.

Task: Define a function onelessdouble-from(n) that creates a stream of values one
less than double the previous value, starting from any value. For example, (1, 1, 1...)
would be the values starting from 1, but (2, 3, 5, 9, 17) would be the values starting from
2. Be sure to test with several starting values!

? Before continuing, call over a TA to check that your work so far.

6 Higher Order Functions of Streams

Hopefully you’re beginning to understand why streams can be useful. However, since
they’re so similar to lists, wouldn’t it make sense to have list-like higher-order functions
that we could use for streams?
Below, we show an example of map2, a version of map that takes two lists and applies

cs019 Lab 4: Streams October 23, 2016

the first argument to them pointwise. Of course, this example is applied to lz-links,
not normal lists:

fun lz-map2<A, B>(f :: (A, A -> B),

s1 :: Stream<A>, s2 :: Stream<A>)

-> Stream:

lz-link(f(lz-first(s1), lz-first(s2)),

lam(): lz-map2(f, lz-rest(s1), lz-rest(s2)) end)

end

Task: Define the equivalent of map for Streams:

fun lz-map<A, B>(f :: (A -> B), s :: Stream<A>) -> Stream

Task: Define the equivalent of filter for Streams:

fun lz-filter<A, B>(f :: (A -> boolean), s :: Stream<A>) -> Stream<A>

Task: Define the equivalent of fold for Streams:

fun lz-fold<A, B>(f :: (A, B -> A), base :: A, s :: Stream) -> Stream<A>

Just for fun: Define a Stream fib that uses lz-map2 that lets us get as many Fi-
bonacci numbers as we want.

? Once a lab TA signs off on your work, you’ve finished the lab! Con-
gratulations! Before you leave, make sure both partners have access to the
code you’ve just written.

