
cs019 Accelerated Introduction to Computer Science Krishnamurthi

Lab 2: Big-O Analysis
September 24, 2017

Note that this is an individual lab. However, you are encouraged to discuss the
problems with your neighbors, and, of course, ask the TAs for help.

Contents

1 Minimum Possible Runtimes 1

1.1 More MPRs . 3

2 Formal Analysis Writeups 4

Objectives

By the end of this lab, you will:

• understand how to find the absolute minimum bound for solving a simple problem.

• have a clear understanding of how to formally write up analysis of a function’s
big O runtime.

1 Minimum Possible Runtimes

Over the last week, we have been concerned with understanding and improving the
runtime of our programs. This is a major concern in computer science, but there are
limits to how much the solution to a given problem can be improved. Here, we will
examine the ”Minimum Possible Runtime” of several problems to gain the ability to
understand goal states and when further runtime optimization is no longer useful.

So what is minimum possible runtime? It’s the LOWEST POSSIBLE runtime a prob-
lem can conceivably be solved in. For example, if we had a list of n numbers and
we wanted to find the minimum (or maximum) element, we know that our minimum
possible runtime is

O([n→ n])

because we have to visit every element in the list. No matter what we do we cannot
avoid checking every element.

Task: With this concept (minimum possible runtimes) in mind, we want to try to
improve on an algorithm you learned in class. Shriram lectured about a sorting al-
gorithm known as quicksort, which sorts lists in O([n → n · log n)] (in the average

cs019 Lab 2: Big-O Analysis September 24, 2017

case). However, this algorithm was created in 1959, and the field of computer science
has advanced since then, so surely we can do better now. Please design an algorithm
which can sort a list of integers in O([n→ n]) using binary comparisons. Think about
quicksort and how you could possibly improve it. What if you selected multiple pivots?
Selected pivots based on some criteria? Or maybe quicksort is the wrong starting point
and we should think about improving some other sorting algorithm? You do not need
to implement it in Pyret, but be prepared to describe the process and runtime your
algorithm will have to a TA.

Before continuing, call over a TA to check that your answer is right.

(Note: This is a challenging problem. If after working on it for 10-15 minutes you are
stuck, please continue to the next task which will provide some pointers to help you in
the right direction.)

Task: Please read this paper on time complexities for sort up through the ”lower
bound” section, and prepare to explain its contents to a TA, as well as how it relates
to the previous problem.

Note: A tree is composed of nodes and leaves. A node has two children, which can be
either nodes or leaves. Leaves have no children. You will be learning a lot more about
trees in the Filesystem assignment!
Note: The paper makes reference to a decision tree. As you can see, the root of the
tree contains all possible permutations of the input (as we don’t know what the sorted
ordering of elements is). As we perform comparisons we eliminate permutations based
on the results until we end up with just one permutation remaining at a leaf, which
represents the correct, sorted ordering of elements if the comparisons made along the
path to the leaf hold.

Before continuing, call over a TA to check your answer

http://www.cs.ubc.ca/~liorma/cpsc320/files/sorting-2x2.pdf

cs019 Lab 2: Big-O Analysis September 24, 2017

1.1 More MPRs

As you have seen, sometimes it’s impossible to improve the runtime of an algorithm any
further. However, constructing a lower bound on the runtime can be tricky; you have to
understand the problem thoroughly and often need to perform in depth mathematical
analysis. Here, we will present a number of simpler problems, for which you will find
absolute minimum lower bounds. You do not need to implement a solution, but be
prepared to explain your reasoning to a TA.

Task: Determine the minimum possible runtime complexity to sum all elements in a
list of integers of size n.

Task: Determine the minimum possible runtime complexity to sum all elements in a
list of integers of size n and a list of size m.

Task: Consider two lists of integers, of size m and n. Determine the minimum possible
runtime complexity to find the sum of all possible products between an element from
the first list and an element from the second list. For example, if the two lists were
[list: 1, 2] and [list: 1] we would compute

1 · 2 + 1 · 1 = 3

Task: What if in the previous problem instead of taking the product of the element a
from the first list and b from the second list, we used ab? Would the minimum possible
runtime complexity change? Using the examples from the previous problem, this would
look like

11 + 21 = 3

Before continuing, call over a TA to check that your answer is right.

cs019 Lab 2: Big-O Analysis September 24, 2017

2 Formal Analysis Writeups

By now you should be fairly comfortable performing Big O analysis, but you may not
yet be accustomed to writing up these findings in a more formal way.

When writing up this and similar analyses, it is important that you do so in a sufficiently
structured way so that your solution and its correctness is easily understood. We have
provided below a template for how this might look with a simple function.

Algorithm we will be analyzing

fun sols-silly-flipper<A>(lst :: List<A>) -> List<A>:

doc: "A silly function that reorders lists."

cases (List) lst:

| empty => empty

| link(f, r) =>

link(f, sols-silly-flipper(reverse(r)))

end

where:

sols-silly-flipper(empty) is empty

sols-silly-flipper([list: 1]) is [list: 1]

sols-silly-flipper([list: 1, 2]) is [list: 1, 2]

sols-silly-flipper([list: 1, 2, 3]) is [list: 1, 3, 2]

sols-silly-flipper([list: 1, 2, 3, 4]) is [list: 1, 4, 2, 3]

sols-silly-flipper([list: 1, 2, 3, 4, 5]) is [list: 1, 5, 2, 4, 3]

end

Our analysis:

Sol’s flipping algorithm runs in O([n→ n2]), where n represents the length of the input
list, lst.

Each time the algorithm moves through the central cases structure, it reverses the
portion of the list it has not yet handled. This has a cost of n - x, where x is the
number of elements left in the list.

No value of x will be skipped, since the function handles only one element at a time:
the list will be passed through with every integer length less than n and greater than
0.

When the length of the list is 0, we will incur some flat cost, r.

So the total cost of the function is

n + (n− 1) + (n− 2) + ... + (n− (n− 2)) + (n− (n− 1)) + r

This becomes n summorial + r, but since we are using Big O notation the addition and
subtraction of smaller powers of n at the end drop off, leaving us with

O([n→ n2])

Now, you will perform your own analysis for a few simple functions.

cs019 Lab 2: Big-O Analysis September 24, 2017

Task: Perform and write out a Big O analysis like above for the following implemen-
tation of the unique function from your summer work:

import Lists as l

fun my-reverse<elt>(loa :: List<elt>) -> List<elt>:

doc: "outputs input list with elements in reverse order"

l.foldl(lam(acc, cur): link(cur, acc) end, empty, loa)

where:

my-reverse(empty) is empty

my-reverse([list: 1]) is [list: 1]

my-reverse([list: 1, 2]) is [list: 2, 1]

my-reverse([list: 1, 2, 1]) is [list: 1, 2, 1]

my-reverse([list: 2, 1, 1, 2, 3]) is [list: 3, 2, 1, 1, 2]

my-reverse([list: 1, 2, 3, 4, 5]) is [list: 5, 4, 3, 2, 1]

end

fun unique<elt>(loa :: List<elt>) -> List<elt>:

doc:"implementation of unique using hofs, outputs input list with no duplicate elements and in same order"

unique-builder = lam(acc, cur):

if not(l.member(acc, cur)):

link(cur, acc)

else:

acc

end

end

my-reverse(l.foldl(unique-builder, empty, loa))

where:

unique(empty) is empty

unique([list: 1, 2]) is [list: 1, 2]

unique([list: 1, 2, 2, 1]) is [list: 1, 2]

unique([list: 3, 3, 1, 3]) is [list: 3, 1]

unique([list: 1, 2, 3, 4, 1, 2]) is [list: 1, 2, 3, 4]

unique([list: 3, 3, 3, 3, 3]) is [list: 3]

end

Before continuing, call over a TA to check that your answer is right.

cs019 Lab 2: Big-O Analysis September 24, 2017

Task: Sol wants to restore the original ordering of lists he applied the flipper function
to. Perform and write out a Big O analysis on his function below intended to repair
the order of his lists:

fun undo-sol<A>(lst :: List<A>) -> List<A>:

doc: ‘‘‘Function to restore the original ordering of lists

reordered by sols-silly-flipper‘‘‘

cases (List) lst:

| empty => empty

| link(f, r) =>

undo-helper(lst, empty, empty)

end

where:

undo-sol(sols-silly-flipper(empty)) is empty

undo-sol(sols-silly-flipper([list: 1])) is [list: 1]

undo-sol(sols-silly-flipper([list: 1, 2])) is [list: 1, 2]

undo-sol(sols-silly-flipper([list: 1, 2, 3])) is [list: 1, 2, 3]

undo-sol(sols-silly-flipper([list: 1, 2, 3, 4])) is [list: 1, 2, 3, 4]

undo-sol(sols-silly-flipper([list: 1, 2, 3, 4, 5])) is [list: 1, 2, 3, 4, 5]

undo-sol(sols-silly-flipper([list: 1, 2, 3, 4, 5, 6])) is

[list: 1, 2, 3, 4, 5, 6]

end

fun undo-helper<A>(original-list :: List<A>, start-piece :: List<A>,

end-piece :: List<A>) -> List<A>:

doc: "helper function for undo-sol"

cases (List) original-list:

| empty => my-reverse(start-piece).append(end-piece)

| link(f, r) =>

cases (List) r:

|empty => undo-helper(empty, link(f,start-piece), end-piece)

|link(f2,r2) => undo-helper(r2, link(f,start-piece), link(f2,end-piece))

end

end

end

Before continuing, call over a TA to check that your answer is right.

Extra fun: If you have extra time, you may attempt to implement the original silly-
flipper function in linear time. If you feel this is impossible, provide a proof!
Super Extra fun: If you want to read about some interesting sorting algorithms, finish
the paper or look up ”radix sort”!

	Minimum Possible Runtimes
	More MPRs

	Formal Analysis Writeups

