
Python, the programming language, was actually named after the Monty Python troupe. A
f i l d bl (l b i i) i l h b f d

I–1

fairly readable (at least by computer scientists …) tutorial on Python can be found at
http://docs.python.org/tutorial/. If you would like to download Python onto your own
computer, go to http://www.python.org/download/. The version that we’re using in this
course is 2.6.3. (Why aren’t we using the most recent version, 3.1.1? It’s because they’ve
made some changes that are incompatible with some existing Python programs that we
intend to use.)

In addition to the Python programming language, there is a “Python programming
i ” i hi h i d h Th ll lenvironment” in which you write and run Python programs. There are actually at least two

such environments. The one we use in this course is called IDLE (Integrated DeveLopment
Environment for python). When you run the IDLE program, a window pops up and within it
you are given a prompt: “>>>”. This is Python’s way of telling you that the next move is up to
you, i.e., you should type something.
For starters, we use Python as a desktop calculator. If you type in any form of arithmetic

expression, it responds with its value. So, the value of 17 is, (tough one …) 17. “3+21” is
pretty obvious, but what about “4+24/4”? Here we get into issues of the precedence of
operators. Things like “+”, “-”, “/”, and “*” (multiplication) are operators. However, “/” and “*”
have higher precedence than “+” and “-”. Thus in the expression “4+24/4”, the operator “/” is
used before the operator “=“; thus first Python computes 24/4, then it adds 4 to the result. If
you want to do the addition first, then you indicate this with the use of parentheses.
You might think that the value of “(3+6)/2” should be 4.5. However, unless you force it to

think otherwise, Python deals with integers. Thus it first computes 3+6, then divides the
result by 2. When you divide 9 by 2, you get an integer quotient (4) and a remainder (1).
Since Python wants the answer to be an integer, it throws away the remainder and uses the
integer quotient as the result.
To convince Python that you really would like it to use numbers with decimals, you have to

include at least one such number in the computation. Thus in the expression “(3.5+6)/2”, the
3.5 tells Python that you are prepared to deal with non-integers, and thus it gives you a
result with decimals.

I–2

It really makes things a lot easier if you can use identifiers, such as a, b, or even value1 to
f l f i Th i h fi li f hi lid l f h l frefer to values of various sorts. Thus in the first line of this slide, we let a refer to the value of

the expression 123*4567. Python will tell us what such an identifier refers to if we type its
name into IDLE. Such identifiers are commonly called “variables,” since their values can vary
(depending on what we do to them).

I–3

Python is equally adept at working with strings of characters as it is at working with
b h fi li f h lid ’ f h i h inumbers. In the first line of the slide we’ve set s to refer to such a string. Note that strings

are enclosed in either double quotes or single quotes. The “+” operator, when applied to
strings, produces a new string that is the result of connecting together its two operands.

I–4

If a string is enclosed in double quotes, then single quotes may appear inside as part of the
i (d i) l ll h d bl i lstring (and vice versa). You can also tell Python to use a double quote or a single quote as a

normal character (i.e., not as something that delineates a string) by putting before it a reverse
slash (\).

I–5

Normally, Python expects each line of text to contain one distinct thing, where “thing”
i l d i h i i d i f h f ’ ll l iincludes arithmetic expressions and strings of characters. If you’ve got a really long string,
this isn’t all that convenient. So, a long, multi-line, string of characters can be delineated
with triple double quotes, as shown in the slide.

I–6

However, by using triple double quotes to delineate a long string, the breaks between lines
b f h i f h S f i f l i li i i hbecome part of the string of characters. So, after setting MD to refer to multi-line string in the
previous slide, when we print its value here, we get one really long string. The original line
breaks have been replace with “\n”. This two-character combination actually represents a
single character called the newline character (sometimes referred to as the linefeed
character). The long string referred to by MD is too long to fit on one line, so it is “wrapped” to
fit within the width of the window.

I–7

Given a string, Python allows us to refer to various pieces of it. The first character of the
i f d b i i lf f d b [0] (h 0 d ? ’ b hi fistring referred to by MD is itself referred to by MD[0]. (Why 0 and not 1? It’s because this first

character is zero characters beyond the beginning of the string. This is important for
computers, less so for people.) An expression such as MD[1:17] refers to a “slice” of the string.
This slice begins just before MD[1] and ends just before MD[17]. This isn’t necessarily the
most obvious way of interpreting this, but, as we will see, it actually makes sense.

I–8

The slide shows some shorthand for working with slices. If you leave off the number before
h l h i ’ if h d b f h l Thi lik ’the colon, then it’s as if you had put a zero before the colon. This may not seem like you’ve
saved a whole lot of typing, but it makes it clear as to how long the slice is (it’s the number
just after the colon).
The slide next shows the use of “len”, which is a Python function. We’ll see numerous

examples of functions; with this one you follow it with a string in parentheses, and its value
is the length of that string.
Finally, we see what happens if you leave out the number following the colon: its as if you

had instead typed in the length of the string. Thus MD[1072:] means the slice starting at
MD[1072] and continuing to the end of the string.

I–9

A string is a sequence of characters. Often that’s what we want, but sometimes what we
i f hi li d l if i i iwant is a sequence of something more complicated. For example, if our interest is not in

characters but in words, we might want a sequence of words rather than of characters. You
might think this isn’t a whole lot different from a sequence of characters, but it allows us to
refer to individual words rather than to characters.

I–10

I–11

The components of a list can be changed, as shown in the slide.

I–12

We can also replace a portion of a list with another list.

I–13

And we can insert a new item into a list.

I–14

Removing an item from a list is somewhat tricky. What’s done in the slide simply replaces
i f h li i h h i (h i h l h i) Thi i llan item of the list with the empty string (the string whose length is zero). This is actually a

legitimate string, and thus the number of items in the list is unchanged.

I–15

To really remove an item from a list, we have to replace it with the empty list.

I–16

The plus operator, applied to lists, gives us list concatenation.

I–17

We’ve seen how to modify a list, but note that Python will not let us modify a string. It
id i b i bl Of id ifi f diffconsiders strings to be immutable. Of course, we can cause an identifier to refer to a different

string — this doesn’t change the original string.

I–18

Lists can be built from any kind of object, including other lists.

I–19

I–20

Let’s now start working with some more reasonable text. First we have to get the text. So,
l ’ j G b d h d l d d b i k i fillet’s assume we gone to project Gutenberg and have downloaded Moby Dick into a text file.
We’ve also used WordPad to remove the copyright notices, etc. Before we can read the
contents of the file into Python, we have to tell it what file we’re interested. This is done via
the function open, which asks the operating system to find the file for us and to make sure
that we’re allowed to read it. The call to open produces a value, provided by the operating
system, that we are to use when referring to the file. We’re not going to get into what this
value actually is; we simply set MDfile to refer to it.
Next we see a new wrinkle in Python. The value referred to by MDfile is actually somewhat

complex; among other things, we can use it to refer to a function that is used to read the
contents of the file. This function is rather conveniently called read; the expression
MDfile.read() produces a string that’s the contents of the file. We set MDtext to refer to this
(rather long) string.
Note that the pathname of the file that is passed to open uses forward slashes rather than

reverse slashes, which would be the usual thing to do in Windows. Using forward slashes
avoids potential problems that might come up if Python interprets them as “escape”
characters that, combined with the next character, have a special meaning.

I–21

If our goal is to work with the words of Moby Dick, then we’d like to convert the string into
li f d i hi ’ l d di d i h li d h ha list of words. Doing this, as we’ve already discussed, is rather complicated. Rather than

doing it perfectly right now, we’re going to do something that close to what we want, but not
exactly what we want. (We’ll do better later.)
“split” is a function that can be used only on strings. What it does is to break up the string

into words, where words are delineated by “white space” (blanks, end of lines, and tabs), and
produce a list containing those words. However, it doesn’t know about punctuation, so our
words contain punctuation such as periods, commas, etc.
You might think that we should invoke split by typing split(MDtext). This, however, is not

how it’s done. The split we just described makes sense only when applied to strings. In
principle we might define other splits, perhaps one that works with integers and another that
works with lists. To make it clear that we’re using the split that works with strings, we type
MDtext.split(). What Python does with this is first to figure out what sort of thing MDtext refer
to. In this case it refers to a string. Thus it uses the version of split that deals with strings
and applies it to MDtext.

I–22

Here we have another example of a function that works only with strings. We actually try to
i li (k) b h i i ll h h i i fuse it on a list (MDtokens), but Python, in its own way, tells us that there is no version of

lower that works on lists.

I–23

But we’d really like to use lower on each item in the list. For this we introduce the notion of
i i Thi i hi lik h fill i i l d hi i ll hiteration. This is something like the fill operation in Excel: you do something in one cell, then
you tell Excel, say, to fill across, doing the same operation to a number of cells. Iteration
gives us a means for, in this case, doing the same operation to all the items in a list.
This iteration statement starts with “for”. Then comes the iteration variable, in this case

“string”. Following this is the keyword “in”, followed by a reference to a list. Then comes a
colon, indicating that more is to come on subsequent lines. The subsequent lines are
executed a number of times; each time the iteration variable (string) is set to the next item in
the list. Note that the second line is indented four spaces. IDLE does this for us
automatically. To indicate to IDLE that you’ve got no more to type, simply type an empty line
(i.e., hit “enter”).
However, don’t do exactly what’s on the slide! Recall that our list is pretty long, so you’d

end up watching the entire contents of Moby Dick appear on your screen, one word per line,
somewhat slowly (why it’s slow is due to problems with how Python itself is implemented).

I–24

Here we do the same thing we were doing in the previous slide, but we put the result into a
li d ilist, one word at a time.
Note that we must first initialize lcMDtokens to the empty list, just to make it clear to

Python that it’s supposed to refer to a list. This makes it clear when we use the “+” operator
that what we have in mind is list concatenation.
Also note that we’ve introduced some shorthand. “a += b” is an easy way to type something

that means the same as “a = a + b”.
Further note that the expression “string.lower()” is placed within square brackets. This is

important because string.lower() produces a string, but we are using the “+” operator to
concatenate two lists. Thus we must turn the string into a (single-item) list.

I–25

Rather than having to type in the contents of the previous slide every time we want to
f h l i h i i li d f i hperform the lower operation on each item in a list, we can produce our own function that

does the same thing. We start a function definition in Python with the word “def” and follow it
with the name of the new function. Then, in parentheses, is a list of zero or more arguments.
(These are known as the formal arguments to the function.) Then comes a colon, indicating
that we’re not done yet. On the next lines come the body of the function, which spell out what
the function actually does. The function produces a value that is the value of whatever
expression follows return.
When we invoke the function we provide actual arguments. The formal arguments are set to

refer to the corresponding actual arguments. Thus, in the example of the slide, we invoke
lowercase, providing it the actual argument MDtokens. The body of lowercase is executed,
after setting the formal argument StringList to refer to MDtokens.
Note that the body of the function is indented four spaces. The body of the “for” statement

is indented a further four spaces.

I–26

Here we see a simpler function, called function. It has three formal arguments; we see
i hi h b h ff f h i iwithin the boxes the effect of each invocation.

I–27

We’ve got to be pretty careful with our use of names, since there can be some apparent
fliconflicts.

(Run this code yourself if you’re unsure of the answer to the question.)

I–28

There are well defined rules that explain what seemingly conflicting names actually refer to.
Th h h l ’ ibl li d ’ll l i h bi lThough the rules aren’t terribly complicated, we’ll explain them a bit later on.

I–29

Another list function is sort. Unlike some of the other functions we’ve seen, sort doesn’t
d li b h f h i li (Thi i k i i l)produce a new list, but sorts the contents of the given list. (This is know as sorting in place.)

I–30

Here’s a program to remove adjacent repeated items in a list. This function makes use of
di i l h i k if h f h h hconditional statements, otherwise known as if statements. In the form shown here, the

expression after the “if” is evaluated. If it’s true, then the statement after the “if” is executed,
otherwise it is not. “!=“ means “not equal” — thus the next statement is executed if the nlist[-
1] is not equal to s.
Note that we’ve introduced the use of -1 as a list index. It refers to the last element of the

list. (An index of -2 refers to the next-to-last element of a list, and so forth.)

I–31

Here we define a function to test if a character is a digit. We’ll see more succinct ways of
d i hi l b hi i i h f d h ’ d d h ifdoing this later, but this is pretty straightfoward. Note that we’ve extended the if statement
with an “else” clause. If the expression following the “if” turns out to be false, then the
statement following the “else” is executed. We’ve also used “or” to string together a sequence
of expressions. If anyone of them is true, then the entire combined expression is true.
The isdigit function is used a building block for the nonumb function, which produces a

new list from its argument that has all words starting with a digit removed. Note that True
and False are constants, pre-defined by Python.

I–32

