
CS0931 Intro Comp for Humanities & Social Sciences Fab Four

Homework 2-6
Due: Oct. 25, 2011, 2:25 pm

In this homework, you will finish the program from class and finally find out
the vocabulary size of Moby Dick ! A word of wisdom: your program will
not work in the first try, a hundred percent sure (I never get my program
work the first time). Advices to avoid sitting there clueless about what went
wrong:

� Run your program as often as possible (even if it does not yet do what
it’s supposed to do) just to make sure there is no errors, so that when
you get an error you know the source (between where I am and where
I last run it).

� Whenever you write a function, test it in the interactive environment
first as thoroughly as possible (by supplying contrived arguments) to
make sure it does the right thing. Then if your program consists of
function calls for the most part, you are confident about the most part,
and that narrows down the places where things could go wrong.

� Write everything down and try to run it all at once is equivalent to
this scenario: you built an aeroplane from parts according to some
diagrams. After you are done, you have one screw left and you have
to figure out where to put it back.

Task 1:

The first task makes sure that the starter code works for you and provides
you examples of iterating through lists in a different way.

a. Download the starter code HW2-6.py. This is essentially the same as
the one in class, except that I renamed the function vocabSize to
vocab and instead of returning the size of the vocabulary, it returns
the entire vocabulary list.

Then, I put several lines demonstrating how to iterate through a list
in two different ways. You are familiar with the second one, but you
should notice that the first one gives you extra power. Note how I am
able to print 'Apple comes after Steve Jobs' using the first way,
but I cannot do that with the second.



CS0931 Homework 2-6Due: Oct. 25, 2011, 2:25 pm

After the examples, I defined more functions to be used later in this
homework (do not worry about them now).

b. Run the program. Then in the interactive environment, after the
prompt, call our vocabulary-computing function by typing

v = vocab('MobyDick.txt')

(make sure that your path is correct). Then inspect the value of vari-
able v by typing, unsurprisingly, v, afte prompt. You should see a list
of strings (words), and if you then inspect the length of v (by typing
len(v)) it should say 853. I am only computing vocab list for the first
10000 characters in Moby Dick (Can you see why the program does
not compute the vocab list for the whole text?) If the program does
not work as expected, please email cs0931tas@cs.brown.edu with
what you did and errors you get if any at all.

Task 2:

As we discussed in class, the way we get rid of duplicates in a list is slow.
We conceived a faster way to do it assuming we can sort a list fast enough.
Let us write a function called fastNoReplicates that takes a list of words
and returns the unique word list in the new way. (You may want to consult
the class slides for general algorithm) The first lines are provided for you.
They sort the word list and intialize our result vocab list with the first word
in the sorted list.

a. You want to iterate through the sorted word list in the iterating-by-
index way (see how I iterated through the Steve Jobs list using the
indices). One subtle difference is that you want to start with the second
word, since (1) you already put the first one in the result list, and (2)
later you will compare a word to the previous one, but the first word
has no previous. Start a for-loop as such, by supplying 1 instead of 0
as the first argument to range.

b. Now we write the body of the loop (statements that will be executed
multiple times). Suppose you called your looping variable (the variable
right after for) index. Then each time the loop is run, index takes
a different value (0, 1, 2, 3, 4, . . . ). What is the expression that
evalues to the element of the list at position index (Put it in a variable

2



CS0931 Homework 2-6Due: Oct. 25, 2011, 2:25 pm

called current)? At the previous position (Put it in a variable called
previous)?

c. (Still writing the body of the for-loop, be careful with indentation
throughout the program!) If current is the same as previous, we
want to say pass (pass is a special word in Python that means do
nothing in this line. Do not try to put quotes or brackets around it);
otherwise, we want to append current to our result(it’s the first time
we see it). Use the += short-hand and Be careful: current is a
string and result is a list.

d. After the loop is completed (again, be careful with the indentation),
the result should hold the list without duplicates. Return it.

Task 3:

Now, let’s deploy our new method of removing replicates.

a. Modify the vocab function so that it uses fastNoReplicates instead
of noReplicates.

b. Run the program as in Task 1 and inspect the vocabulary list and its
size. You should get the same answer as before (both methods are
correct, just that the new one is faster).

c. Now, in the function readFile, instead of returning myString[:10000],
return myString. We are no longer afraid of processing large lists!

d. Run the program again. Are you impressed with how fast it computes
the vocabulary list? This time, do not try to inspect the whole list
because it takes too long to print. You can first look at how many
words are in there. Then you can look at slices of this list, for example,
v[1000:2000].

Congratulations! You have just completed a software upgrade.

Task 4:

As you inspected different portions of the vocabulary list, you may wonder:
this is a crapy vocab list! There are numbers, punctuations, mixed cases
(whale and Whale should really be the same word). Now let us fix that.

3



CS0931 Homework 2-6Due: Oct. 25, 2011, 2:25 pm

Essentially, we want to do some clean-ups to the big string we get out of
the file before we split it into words. Two possible things to do are turning
all letters into lowercases, and replacing all numbers and punctuations with
whitespaces (so that eat,pray,love can be split as if it is eat pray love).

a. I’ve written a function called cleanup for you. It takes a string and
returns a cleaned-up string (always ask yourself what kind of argu-
ments a function takes and what kind of value it returns). You can
see I solve the problem by creating more problems (I have to define
more functions for this to work!). First, I use a built-in function called
lower to turn all letters in my string to lower cases (You can convince
yourself it works by running a simple example in the interactive envi-
ronment). Then removeNumbers and removePunctuations does what
their names suggest (ask yourself, what type of values do they take as
arguments? what type of values do they return?)

b. I also wrote removeNumbers for you as an example. Read it and make
sure that you understand why it works. There are a couple of things
to notice:

– You can iterate through characters in a string in the same way
you iterate through items in a list.

– But you cannot modify a string. So I have to create an empty
string first and as I iterate, append new characters to it.

– When I append a new character, I use the += short-hand because
my result string will eventually grow really big.

– A string that contains a whitespace is not the same as an empty
string.

c. Now write the function removePunctuations that takes a string and
returns another string, replacing punctuations with whitespaces.

Task 5:

a. Now, we need to insert this cleanup step into our assembly line. Our as-
sembly line is in the function vocab (read→split→remove duplicates).
Use the function cleanup to cleanup your big string before you split
it.

4



CS0931 Homework 2-6Due: Oct. 25, 2011, 2:25 pm

b. Run your program and inspect your vocab list (partially!). You may
discover that you may have missed a lot of possible punctuations. You
can go back and improve your function if you are a perfectionist.

c. Hooooraaaay! Now the vocab list looks pretty good. Yes it is not
perfect: what about create, creates, creating, created?. We
will deal with them next time.

Handin

Email your program to cs0931tas@cs.brown.edu and title the file
‘YOURNAME’HW2-6.py — for example, DylanFieldHW2-6.py.

5


