
CS0931 Intro Comp for Humanities & Social Sciences Fab Four

Homework 2-8
Due: Nov. 1, 2011, 2:25 pm

In this homework, you will write a program that produces a concordance
for any given texts in one second. You have leaned all the necessary pieces
and all you have to do is to put them together. This does not mean that
this homework is easy; on the contrary, it may be the hardest one you have
encountered so far. So before you start, bear the following advice in mind:

• When your program is wrong and does not work, you will almost
certainly make it more wrong by trying to change random part of it,
hoping to stump on the correct answer (putting brackets around stuff,
change the indentations, etc). Only make changes when you have
good reasons (“Ahuh, I see what I did wrong here: I incremented a
list with a number. I should put brackets around that number so that
I increment that list with another list.” or “This statement should be
executed every time the iteration runs, otherwise it makes no sense
algorithmically. Let me indent it.”)

• Try to read the error message. The error message usually comes with a
line number to indicate where the error occurs, together with what er-
ror it is (“global name 'inventory'undefined” means that you’ve
used a variable that has not been assigned a value; “key error:

Star Wars” means that you are trying to look up 'Star Wars' in
a dictionary that does not contain it as a key. Sometimes it is obvious
how to fix them. If it is not clear, try to run the program on paper
(using the model we gave you in class 2-3) and you may find you’ve
called an object-specific function on the wrong type of object or asking
for the value of a key which is not in the dictionary.

• All other advices in HW2-6, in which you wrote a program that counts
the vocabulary size of some texts.

Task 1: T

his is a warm-up problem. Consider the need of organizing phonebooks. My



CS0931 Homework 2-8Due: Nov. 1, 2011, 2:25 pm

phonebook is in the following format:

[['Peter', '345-8766'],

['Lois', '459-2346'],

['Stewie', '345-2354'],

['Peter', '854-1198']]

That is, a list of lists. Each enclosed list contains two elements, the first
being a name and the second a telephone number. Note that I may have
several phone numbers for the same name. I want to organize my phone-
books, so that it is a dictionary that maps names to lists of phonenumbers.
For this example, the organized phonebook should look like this:

{'Peter': ['345-8766', '854-1198'],

'Lois': ['459-2346'],

'Stewie': ['345-2354']}

Write a function that does this job (takes a list of that format, returns a
dictionary). You do not have to hand it in, but keep it as a reference as you
build your concordance. Getting this function correct is very important for
the rest of this homework. Test it on contrived examples (make up some
phonebooks).

Important: review the last homework for how to query a dictionary with a
key and how to add/change a key and its value in a dictionary. You will also
need to check if a dictionary contains a certain key by using this expression:

k in dict

which evaluates to True if k is a key in dictionary dict, or False otherwise.
Try it with your own examples first.

Task 2:

Let us first develop the algorithm for creating a concordance. Please pay
attention to how I break up a big task into small ones and attack them
separately (you will have to do that for your project!).

First we define the goal. A concordance maps words to all their occurrences
in the book, with surrounding texts. That sounds like what a dictionary

2



CS0931 Homework 2-8Due: Nov. 1, 2011, 2:25 pm

does. The keys of such a dictionary are strings (words), and the values are
list of strings (surrounding texts). To save space and to make it simpler, the
values can be a list of integers, which represent the positions of the words in
the texts. So the function that builds the concordance (build concordance)

• Takes a string as its argument, for which we build a concordance.

• Returns a dictionary that maps words to a list of integers. (The inte-
gers tell where that word occurs in the text)

We then need another function to query the concordance to make it useful.
The function that queries a concordance (print concordance)

• Takes a word, a concordance (dictionary), a string (text) as arguments

• Prints all occurrences of the word in the text, with surrounding con-
texts, using the dictionary.

Task 3:

Let us tackle the function build concordance first. In class, we saw how
regular expressions can help us find all occurrences of some patterns in a
string together with the positions we find them at. In the starter code for
this homework, the function build concordance just iterates through some
text, and prints out matches with positions. Make sure you understand
what it is doing (and run it!).

In each iteration, you get a word and its postion. You want to organize them
into a dictionary that maps a word to a list of positions. Hmmm... does that
remind you of the warmup question? Modify the function build concordance

so that it returns a dictionary that maps a word to a lists of position.

Task 4:

print concordance is relatively simple. Given a word, a concordance re-
turned by build concordance, and the corresponding text, you want to
print all occurrences of that word in the text with contexts. Here are the
steps:

• Query the concordance (dictionary) for all the positions at which the
word occurs.

3



CS0931 Homework 2-8Due: Nov. 1, 2011, 2:25 pm

• For each position

– Form a string that spans the position. (e.g., if your word starts at
position 584, then text[564:604] ought to give you reasonable
context surrounding that occurrence of the word. How many
characters you want to print before and after the word is your
choice)

– Print that string

• Return nothing

Task 5:

Run your program without changing the string s at the end of the program
to something big (we are still in the “debug” mode). In the interactive
environment, see what this function call gives you:

>>> print concordance('ishmael', conc, s)

What is going on? Can you fix this problem? (Hint: you have to do some
extra work when calculating the start and end indices of your strings. Make
sure that no index is smaller than 0 or larger than the size of your text)

Task 6:

Extra Credit. Run your program again. This time, change the string s

at the end of the program to be read from the Moby Dick file. In the in-
teractive environment, try to invoke the function print concordance with
proper arguments. Remember, that all the variables you defined in your
program outside of any function definitions are still “alive” in the interac-
tive environment that pops up after you run the program.

You may notice that the text printed by your concordance does not look
quite good, mainly because of the line breaks. Let us do some cosmetic work.
In the last task, you formed some string and printed them out. Before you
print them, replace all the line breaks (\n) with white spaces. You can choose
to write a for-loop, or call a function that you yourself defined, or call this
one http://docs.python.org/release/3.1.3/library/re.html#re.sub

Task 7:

Play with your program! You should by now feel really, really proud of
yourself.

4

http://docs.python.org/release/3.1.3/library/re.html#re.sub


CS0931 Homework 2-8Due: Nov. 1, 2011, 2:25 pm

Handin

Email your program to cs0931tas@cs.brown.edu and title the file
‘YOURNAME’HW2-8.py — for example, DylanField2-8.txt.

5


