CS0931 Intro Comp for Humanities & Social Sciences Fab Four

Project 2 Rubrics
Due: Nov. 15, 2011, 2:25 pm

What to Hand in

You should hand in a zip file of your project folder which must contain

e a README.txt file that briefly describes the project

e a link.txt that contains the URL of your website for the project,
which is a detailed documentation of your work

e a folder named assets that contains all your python and Excel files
and all your data files

Click here if you do not know how to zip a folder

Coding Style

e Choose meaningful function names. Even though you can name
your functions whatever you like, but it is impossible for others to
understand you program if you name a function that encrypt a message
pizza.

¢ Choose meaningful variable names. Similarly, your variable names
should indicate to some extent what they mean. Using n for number
is OK, but you want to say

for book in bookList:

instead of
for n in bookList:

e Document your functions. This envolves two things: using triple
quotes to provide a ‘tooltip’ for your function and using comments to
tell people what are your functions’ arguments and return values, and
what it does (it may have some overlap with the tooltip. An example
is as below:


http://windows.microsoft.com/en-US/windows-vista/Compress-and-uncompress-files-zip-files

CS0931 Project 2 Ribuies Nov. 15, 2011, 2:25 pm

1 def add(a, b):

2 ''' adds a and b and returns the sum '''

3 # input: number, number (a pair of numbers that we'll
add)

4 # output: number (their sum)

) # purpose: compute the sum of two numbers and return it

6 return a + b

A more interesting example is

1

2 def averageVocabSize(booknamelist)

3 ''' Compute the average vocabulary size for the books
in the list'''

4 # input: a list of strings (each one the name of a
file containing a book's text)

) # output: number (the average of the vocab
sizes of those books)

6 # purpose: take a list of booknames like ['pride.txt',
'moby.txt'] and foreach bookname, find the
vocabulary size,

7 # and then compute and return the average of these
sizes (i.e., their sum divided by the number of
booknames) .

8

9 # some actual code here

e Comment your code. Whenever you are doing something tricky
or not immediately obvious, you should use comment to exlain it.
Even if everything is clear, you should also use comment to explain
the structure of your code to make it easier to read. For example,
comment a for-loop and say what it does.

e Always close a file whenever you open one. Having an opened
file dangling there is a bad habit.



CS0931 Project 2 Ribuies Nov. 15, 2011, 2:25 pm

Website

e Home page should concisely present the problem(s) being solved, or
calculation being carried out.

If they created the XKCD “Fucking awesome/awesome as shit” graph,
the first page could say “I used automated internet searches and some
python code and some Excel to produce the graph below [show pic];
this website describes the process used”

For more question-based projects, a clear statement of the question
and the computational approach used should appear on the front page,
as in “Do young writers have larger vocabularies? Using 22 texts from
Project Gutenberg, I analyzed this question and concluded they did
not; they in fact had SMALLER vocabularies than older authors. For
each text, I determined (by hand, using Wikipedia) the author’s age
at publication, and then used a variation of the CS931 work (see jlink
here;) on concordances to determine the vocabulary size, and com-
puted a line-of-best-fit between age and vocabulary size, shown below.
Here’s (LINK; a description of the analysis process; here’s jlink; a
discussion of the results and their significance...”

e There should be an Approach page that discuss in detail how you
attacked the problem or how the calculation is carried out.

For analysis projects, discussion should be coherent, well-organized,
well-supported. For projects like the XKCD graph project, the discus-
sion should be about the “process”, as in “one difficulty was finding
a good list of adjectives to use, because ...” and “I tried the program
a second time, using “damned X” and “X as hell”, and found similar
results — for SOME adjectives there was a large difference in frequen-
cies between the two uses, for others almost no difference. From the
limited data I got, I looks as if the large-difference adjectives are more
likely to be negative (ugly, fat, stupid), while the small-difference ones
were neutral or positive (tiny, huge, awesome, ...)"

e There should also be a Data page that describes the data source
and any by-hand work done on the data, like “I opened each file in
Notepad and removed the Project Gutenburg boilerplate at the start
and finish, and then saved the file” and “I named each file with a short



CS0931 Project 2 Ribuies Nov. 15, 2011, 2:25 pm

mnemonic like “pride.txt” for “Pride and Prejudice”, rather than using
Gutenberg’s name, which was something like “11030JX.txt”, which
was hard to read/remember.

Handin

Email your zip file to cs0931tas@cs.brown.edu and title the file
‘YOURNAME’proj2.zip — for example, DylanFieldProj2.zip.



