CS1380 Distributed Computer Systems Benson

Project 2: Tapestry
Due: 11:59 PM, Mar 15, 2020

Contents
(1__Introductionl 2
|2 Tapestry Protocol| 2
[2.1 Identitying Nodes and Objects| 2
2.2 Root Nodesl o 2
[2.2.1 Selecting Root Nodes| 2
[2.2.2 Example: A Tapestry Network’s Objects and their Roots| 3
2.3 Tapestry Node State| o 3
[2.3.1 Routing Tables| 3
[2.3.2 Backpointer Tables| oo 4
2.4 Prefix Routing] 4
[2.5 Publishing and Retrieving Objects|)
[2.6 Adding Tapestry Nodes| 5
[2.6.1 Acknowledged Multicast| Lo 5
[2.6.2 Backpointer Traversall oL o 6
2.7 Graceful Exits|. 7
2.8 Fault Tolerancel 7
[2.8.1 Errors While Routing| o oo 7
282 TLossof Root Nodel o oo 7
[2.8.3 Lossof Replicas| 8
2.8.4 Miscellaneouslo 8
|3 The Assignment| 8
B1 TFunction Stubsl 8
B2 Provided Functionsl 9
[3.3 Remote Procedure Call (RPC)[. 10
3.4 A Note About Contextl. 11

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

5 'Testing 11
[6 Getting Started| 13
[7 Handing in| 13

1 Introduction

The final project for CS1380, PuddleStore, uses an underlying distributed object location and
retrieval system (DOLREI) called Tapestry to store and locate objects. This distributed system is
similar to Chord in that it provides an interface for storing and retrieving key-value pairs. From
an application’s perspective, the difference between Chord and Tapestry is that in Tapestry the
application chooses where to store data, rather than allowing the system to choose a node to store
the object at.

Tapestry is a decentralized distributed system. It is an overlay network that implements simple
key-based routing. Each node serves as both an object store and a router that applications can
contact to obtain objects. In a Tapestry network, objects are “published” at nodes, and once an
object has been successfully published, it is possible for any other node in the network to find the
location at which that object is published.

2 Tapestry Protocol

2.1 Identifying Nodes and Objects

Much like in other distributed systems, nodes and objects in the Tapestry network are each assigned
their own globally unique identifier. In Tapestry, an ID is a fixed-length sequence of base-16 digits.

2.2 Root Nodes

In order to make it possible for any node in the network to find the location of an object, a single
node is appointed as the “root” node for that object. The root node stores the reference to the node
that actually stores the object.

Because Tapestry is decentralized, and no single node has a global perspective on the network, the
root node for an object must be chosen in a globally consistent and deterministic fashion. The
simplest choice of root node is the one which shares the same hash value as the object. However,
it is common for there to be fewer nodes in the network than possible values in the space of hash
values.

2.2.1 Selecting Root Nodes

For this reason, a “root” node for an object is chosen to be the one with a hash value that shares
the most prefix digits with the object’s hash value.

"http://en.wikipedia. org/wiki/Decentralized_object_location_and_routing

http://en.wikipedia.org/wiki/Decentralized_object_location_and_routing
http://en.wikipedia.org/wiki/Decentralized_object_location_and_routing

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

Specifically, two hash values share a prefix of length n if, from left to right, n sequential digits
starting from the leftmost digit are the same. For example, in a network with nodes 1a9¢, 28ac,
2d39, and ae4f, the root node for an object with the hash 280c is 28ac and the hashes share a
prefix of length 2, because the other nodes share a prefix of length 1 or 0. However, given this
definition, the choice of root node (from the same set of nodes as is in the previous example) would
be ill-defined for an object with the hash 2c4f because it shares a prefix of length one with both
28ac and 2d39. Therefore, we need a more general way of choosing the root node when a single
match is unavailable.

Starting with the value v of the leftmost digit, we take the set of nodes that have this value as the
leftmost digit of their hashes as well. If no such set of nodes exists, it is necessary to deterministically
choose another set. To do this, we can try to find a set of nodes that share the value v + 1 as
their hash’s leftmost value. Until a non-empty set of nodes is found, the value of the digit we are
searching with increases (modulo the base of the hash-value). Once a set has been found, the same
logic can be applied for the next digit in the hash, choosing from the set of nodes we identified with
the previous digit. When this algorithm has been applied for every digit, only one node will be left
and that node is the root.

2.2.2 Example: A Tapestry Network’s Objects and their Roots

To clarify, suppose a Tapestry network contains only the nodes 583f, 7041, 70£5, and 70fa.

To find the root node for an object with a hash of 60f4, we first consider the leftmost digit’s value,
6. None of the network nodes share this leftmost value, so we check if any network nodes have the
leftmost value 6 + 1 = 7. 7041, 70£5 and 70fa do, so we take this set and go to the next digit. The
object hash’s next digit, 0, is shared with all the network nodes in the current set, so we go to the
next digit. The third digit of the object’s hash, f, is shared with only 70£5 and 70fa so we take this
smaller set and go to the last digit. The object’s hash has a final digit of 4, which doesn’t match
either 5 or a, so we try with 4 + 1 = 5. This matches the network node with a hash of 70£f5, so
this node is the object’s root node. If the object’s hash had been 60£6, its root node would be the
network node with the hash 70fa.

The table below lists hypothetical object hashes and their corresponding root nodes within this
network.

Object Hash | 3f8a | 520c | 58ff | 70c3 | 60f4 | 70a2 | 6395 | 683f | 63e5 | 63¢9 | beef
Root Node | 583f | 583f | 583f | 70d1 | 70f5 | 70d1 | 70d1 | 70d1 | 70f5 | 70fa | 583f

2.3 Tapestry Node State

Some state is maintained on each Tapestry node to carry out its ability to route to nodes and lookup
objects.

2.3.1 Routing Tables

In order to allow nodes to locate objects stored at other nodes, each node maintains a routing table
that stores references to a subset of the nodes in the network.

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

A routing table has several levels; one level for each digit of the node’s ID. In a Tapestry mesh that
uses 40-digit IDs, the routing table would thus have 40 levels. The level represents the size of the
shared prefix with the local node; that is, a node on level n of the routing table shares a prefix of
length n with the local node.

Each level of the table consists of several slots; one for each unique digit. In a tapestry mesh that
uses base-16 digits, each level of the routing table would therefore have 16 slots. A node in the d*
slot of the n'" level has d as its n'" digit (keep in mind that n is zero-indexed!). For example, in the
table given, the entry at level 1 in slot 6 (362d) shares a prefix of length 1 (because it’s on level 1)
and has 6 as its first digit (because it’s in slot 6). If there had been an ID of 3782, then on level 1
in slot 7 we would see this ID.

In summary, a routing table entry is defined by two numbers: its level and slot. The level represents
the length of the shared prefix with the local node, and the slot represents the first digit of the
remote node after the shared prefix.

An example routing table for a node with the hash 3£93 is shown below:

Level ‘ 0 1 2 3 4 5 6 7 8 9 a b c d e f
1c42 2fe4 3f93 437e 5c2a 65bb 705b 8887 93cb c3ca d340 e9ce fod7
309c¢ 362d 3c6f 3f93

W N = O

3f93
3f93

If the local node knows about more than one node that fits into a cell, the one that is stored at
each entry in the routing table is the closest one to the local node. In a production implementation,
distance between nodes is measured by the network latency between them, but for this project, we
arbitrarily define distance as the absolute value of the difference between hashes.

In addition, for robustness and redundancy, each slot of the routing table actually stores multiple
references, typically three. The first one is the closest node, and the others are backups in case the
first one fails to respond to requests. These are sorted by distance to the local node.

2.3.2 Backpointer Tables

For additional connectivity, each node also stores backpointers in addition to its routing table.
Backpointers are references to every node in the network which refers to the local node in their own
routing tables. These will become useful in maintaining routing tables in a dynamic network. When
the local node adds or removes a remote node from its routing table, it notifies the remote node,
who will then update its backpointer table.

2.4 Prefix Routing

The routing table at any given node does not store a reference to every other node in the network.
Therefore, in order to find the root node for a particular ID, several nodes may be traversed until
one is found that can definitively identify itself as the root node. The search for a root node may
begin anywhere.

Using the same logic that is used to choose a root node globally from the network, a node that
matches some number of digits from the object’s hash may be chosen from the routing table. In
turn, the selected node’s routing table is inspected and the next node in the route to the root is
chosen. At each successive node in the route, the number of digits that match the object’s hash

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

value increases until the last digit has been matched and the root node has been reached. This
type of routing is called “prefix routing”, and the maximum number of hops required to reach the
destination node is equal to the number of digits required to represent a hash value.

func (node #*Node) FindRoot(id)
nextHop = node.table.getNextHop(id)
root = nextHop.FindRoot (id) // recursive call
return root

In the version of Tapestry presented in the paper, when the location of an object is published to the
object’s root node, the nodes encountered along the path to the root node also have the location
information for that object cached at them. This allows object lookups to finish in fewer hops from
many starting locations in the network. Your implementation is not required to have this feature,
but it might be the starting point for an A-level extension to PuddleStore.

2.5 Publishing and Retrieving Objects

When an object is “published” by a node, that node routes towards the root node for the key, then
registers itself on that node as a location of the key. Multiple nodes can publish the same object. A
tapestry client wishing to lookup the object will first route to the root node of the object. The root
node then informs the client of which Tapestry nodes are the ones that have published the object.
The client then directly contacts one or more of those publishers to retrieve the actual object data.

2.6 Adding Tapestry Nodes

To accommodate an increased workload, it is possible to add nodes to a Tapestry network. To
perform this operation, the new node is assigned its ID and then routes towards the root node for
that ID. The root node initiates the transfer of all keys that should now be stored on the new node.
The new node then iteratively traverses backpointers, starting from the root node, to populate its
own routing table.

2.6.1 Acknowledged Multicast

In Tapestry, when a new node joins the network, other nodes transfer object references to it, i.e. it
takes over and becomes the root for objects whose IDs now closely match its ID. It is possible for
multiple different nodes to be storing references that should now be transferred to the new node.
For example, suppose our Tapestry currently has nodes a23b, 285b and 289a, and our new node
is 221f. The root for the new node is thus 285b. However, both 285b and 289a could be storing
references that should be transferred to the new node. For example, 225f would be stored on 285b,
and object 229f would be stored on 289a.

In general, if the new node has a shared prefix of length n with the current root for its ID, then
any other node that also has a shared prefix of length n with the new node could have relevant
references. Such nodes are called need-to-know nodes.

To deal with this, the root node performs an acknowledged multicast when it is contacted by the
new node. The multicast eventually returns the full set of need-to-know nodes from the Tapestry.

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

The multicast is a recursive call — the root node contacts all nodes on levels > n of its routing
table; those nodes contact all nodes on levels > n + 1 of their routing tables; and so on. A node that
is contacted during the multicast will initiate a background transfer of relevant object references to
the new node, trigger a multicast to the next level of its routing table, then merge and return the
resulting lists of nodes (removing duplicates) while adding the new node to its routing table.

AddNodeMulticast (newNode, level)
targets = routingtable.get(level) // Must include local node
results = []
for target in targets
results.append(target.AddNodeMulticast (newNode, level + 1))
self.addRoute (newNode)
transferRelevantObjects (newNode)

return merge(results, targets)

AddNodeMulticastshould be called with all levels > the level provided. The pseudocode above relies

on RPC calls over the local node (ourselves) to continue executing local.AddNodeMulticast (newNode,level+1).
This leads to unnecessary network messages and makes the system slower and less robust. You

could try to use recursive function calls instead of gRPC calls on the local node.

2.6.2 Backpointer Traversal

Backpointer traversal is used to find the best/closest set of nodes to fill the routing table with. This
algorithm is different from the one in lecture, but as we already require you to use backpointers for
the graceful exit, we also require you to use the backpointer based algorithm to fill the routing table
while adding a node.

Once the multicast has completed, the root node returns the list of need-to-know nodes to the new
node. The new node uses this list as an initial neighbor set to populate its routing table. The
node iteratively contacts the need-to-know nodes, asking for their backpointers. Once the node
has compiled backpointers from each of its need-to-know nodes, it is necessary to remove duplicate
nodes, and trim the list of nodes to visit to K, as the number of nodes we search can get very large,
but we only care about the closest few nodes. We give you the constant K in node_init.go.

TraverseBackpointers(neighbors, level)
while level >= 0
removeDuplicatesAndTrimToK (neighbors)
nextNeighbors = neighbors
for neighbor in neighbors:
nextNeighbors.append (neighbor.GetBackpointers(level))

AddAl1ToRoutingTable (nextNeighbors)
neighbors = nextNeighbors
level =1

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

2.7 Graceful Exits

A good implementation of Tapestry is extremely fault tolerant, so a node could leave without
notifying any other nodes. However, a node can gracefully exit the Tapestry, too. When a node
gracefully exits, it notifies all of the nodes in its backpointer table of the leave. As part of this
notification, it consults its own routing table to find a suitable replacement for the routing tables of
all the other nodes.

Objects stored at exiting nodes will be lost and no objects are transferred.

2.8 Fault Tolerance

The Tapestry network is designed to be extremely fault tolerant. As with any distributed system,
some nodes may become unavailable unexpectedly. The mechanisms described in this section ensure
that there is no single point of failure in the system. You are expected to cleanly handle
errors in this project, including the sudden crashing of nodes without cleanup.

In this project, any time you make a remote method call you must check if an error is returned, and
handle the error appropriately.

Note that when a node crashes, the objects stored at that node will be lost. However, it is the
responsibility of the client application that uses the Tapestry network to put duplicate objects across
the network. You don’t need to worry about preventing data loss in this case.

2.8.1 Errors While Routing

When routing towards a root node, it is possible that a communication failure with any of the
intermediate nodes could impede the search. For this reason, routing tables store lists of nodes
rather than a single node at each slot. If a failed node is encountered, the node that is searching
can request that the failed node be removed from any routing tables it encounters, and resume its
search at the last node it communicated with successfully. If the last node it communicated with
successfully is no longer responding, it should communicate with the last successful node before
that.

2.8.2 Loss of Root Node

Another potential loss from failure is the root node data. Two measures are taken to minimize the
impact of failed root nodes.

First, published objects continually republish themselves at regular intervals. This ensures that if a
root node goes down, a new root node will eventually take its place. Unfortunately, there will still
be a period of time in which the location information for these objects is unavailable.

Second, applications built on top of Tapestry typically store each key multiple times with different
salts, thereby offering backup locations when searching for an object. You do not have to implement
salting in this assignment.

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

2.8.3 Loss of Replicas

Finally, applications built on top of Tapestry might wish to ensure that an object remains available
at all times, even if the node that published it fails.

In the “Publishing and Retrieving Objects” section, it was mentioned that multiple tapestry nodes
can publish the same object. This means that client applications can learn of multiple nodes storing
a particular object. Thus, if the object becomes unavailable at one of these nodes, the client can
simply contact another one of the nodes. On the root node for a key, when a long enough period
of time has elapsed without receiving an object republish notification from a publishing node, the
object expires and is removed.

2.8.4 Miscellaneous

The cases listed above are the common issues which can arise due to network errors. There are
other more obscure ways in which roots may become unreachable for a short time when nodes join
or fail in a certain order. Tapestry’s method for dealing with this is to assume that there are enough
salted hash values for a given object that not all salts will become unreachable due to such errors,
and those which do become unreachable will be corrected when the replica performs its periodic
republishing.

3 The Assignment

A large amount of support code has been given to you for this assignment. All of the required data
structures are implemented in the support code. The code you will write is related to routing in
the network, storing and retrieving object location data, and coping with failures. Please become
very familiar with all of the support code before beginning to implement any of the features. The
comments for each method that you will fill in should give you a good idea of how to proceed.

3.1 Function Stubs

The code you must write is marked with // TODO students should implement this comments
and is spread across the Go files in the tapestry directory. Feel free to add helper functions. You
must implement the following functions:

e id.go

func SharedPrefixLength(a ID, b ID) int
func (id ID) BetterChoice(first ID, second ID) bool
func (id ID) Closer(first ID, second ID) bool

e routing_table.go

func (t *RoutingTable) Add(node RemoteNode) (added bool, previous *RemoteNode)
func (t *RoutingTable) Remove(node RemoteNode) (wasRemoved bool)

func (t *RoutingTable) GetLevel(level int) (nodes [JRemodeNode)

CS1380

Project 2: Tapestry 11:59 PM, Mar 15, 2020

func (t *RoutingTable) FindNextHop(id ID, level int) (node RemoteNode)

e node_init.go

Functions for creating a Tapestry node and joining an existing network

func (local
func (local

func (local

e node_core.go

*Node) Join(otherNode RemoteNode) (err error)
*Node) AddNodeMulticast(newnode RemoteNode, level int)
(neighbors [JRemoteNode, err error)

*Node) addRoute(node RemoteNode) (err error)

Functions for publishing and looking up objects in the network

func (local

func (local
func (local

func (local

func (local

func (local

func (local

e node_exit.go

xNode) Publish(key string) (done chan bool, err error)

xNode) Lookup(key string) (nodes [JRemoteNode, err error)
*Node) FindRoot(id ID, level int)
(root RemoteNode, toRemove *NodeSet, err error)
*xNode) Register(key string, replica RemoteNode)
(isRoot bool, err error)
*Node) Fetch(key string)
(isRoot bool, replicas []JRemoteNode, err error)
*Node) Transfer(from RemoteNode, replicamap map[string] [JRemoteNode)
(err error)

*Node) findRootOnRemoteNode(start RemoteNode, id ID) (RemoteNode, error)

Functions for notified leave

func (local

func (local

*Note) Leave() (err error)

xNode) NotifyLeave(from RemoteNode, replacement *RemoteNode) (err error)

A partial implementation of Join in node_init.go is provided to demonstrate invocation of local
and remote methods, and error handling.

3.2 Provided Functions

The TAs have provided you with a sufficient amount of supporting data structure. Below are some

of them.
struct Backpointers | BlobStore | LocationMap
Functions | - Add - Get - Register/RegisterAll
- Remove - Put - Unregister /UnregisterAll
- Get - Delete - Get

- DeleteAll | - GetTransferRegistrations

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

3.3 Remote Procedure Call (RPC)

RPC is a technique that allows programs to call procedures on other machines. When one machine
calls a procedure on another machine using RPC, the execution is suspended on the first machine

until the call on the second machine returns and its return value is received by the original machine.

In the stencil code, tapestry_rpc_client.go contains the functions that handle calling procedures
on other nodes. tapestry_rpc_server.go contains the local implementations of the functions
being called on a machine.

RPCs for Tapestry are handled by the gRPC library which runs on top of Protocol Bufters, a way of
generating communication files from a .proto file. You will find this code pre-generated for you in
tapestry_rpc.pb.go, and the source file it was generated from in tapestry_rpc.proto. In future
projects, you will be asked to do more of this yourself, so it is worth taking a glance at both these
files.

We divide RPCs into two categories, client functions and server functions. Server functions expose
local methods to other nodes, and are listed in tapestry_rpc_server.go. Client functions handle

connection to a remote node and calling a function on it, and are listed in tapestry_rpc_client.go.

To expose local functions as RPCs, your Node object needs to implement the TapestryRPCServer
interface generated by gRPC. These methods follow a very particular signature:

func (local *Node) XxxCaller(ctx context.Context, req *Request) (*Reply, error)

We’ve adopted a convention of using the suffix “Caller” to differentiate these methods from the other

methods of Node. You are responsible for implementing around half of them in tapestry_rpc_server.

but they have all been outlined for you there. Each of these Caller functions acts on the local node
after receiving a request from a remote node. So each needs to:

1. Unpack the arguments from its request struct.

2. Call the corresponding local method.

3. Pack the results into a reply struct.

4. Return the reply struct and any error.
Client functions are methods of the RemoteNode struct, and handle invoking a method over a network
connection. We use the “RPC” suffix to denote these methods, and you will also be implementing
about half of them in tapestry_rpc_client.go. Each client function needs to do the following:

1. Pack its arguments into the appropriate request struct.

2. Obtain a network connection to the remote node.

3. Invoke the method over the network connection, and receive a reply struct and an error.

4. Unpack the reply struct, return these values and any error and if there was an error, close the

network connection.

We’ve given you a ClientConn method of RemoteNode that will establish or reuse a connection to
a remote node, and return a TapestryRPCClient that will let you call the “Caller” functions, as

10

g0,

http://www.grpc.io
https://developers.google.com/protocol_buffers

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

well as several other utility functions in tapestry_rpc_client.go and tapestry_rpc_server.go
to convert between message types and to error check RPCs. Feel free to use these in your
implementations, and to copy the patterns from the other RPC client and server functions.

These XxxRPC and XxxCaller functions shouldn’t contain any application logic inside them; all
they should need to handle is unpacking arguments and passing them to a different function. For
instance: one node invokes AddNodeRPC, which obtains a client connection and calls AddNodeCaller.
On the remote node, a new Go routine begins AddNodeCaller, which calls AddNode on its local
node. In general, <function>RPC calls <function>Caller, which calls <function>.

3.4 A Note About Context

All of the functions generated by gRPC take a context parameter, which we aren’t using for this
project. Feel free to use context.Background () whenever you need to provide one.

4 Demo
A TA implementation of Tapestry is available at
/course/cs1380/pub/tapestry/{linux,darwin,windows}/tapestry

Once your implementation is sufficiently functional, you should test with the TA implementation
for interoperability.

5 Testing

We expect to see several good test cases. This is going to be worth a portion of your grade.
Exhaustive Go tests are sufficient. You can check your test coverage by using |Go’s coverage too

A number of Tapestry constants are defined in node_init.go. You can change these constants
during development to simplify debugging. For your own unit tests, you may assume we will use the
default values specified in node_init.go. However, our own testing suite may use different values
for these parameters, so do not hard-code values in your implementation.

When writing your unit tests, you may run into an error from gRPC along the lines of socket:
too many open files. Each network connection your computer maintains uses up a file descriptor,
as if you had opened a file for reading or writing, and there’s a limit to how many you are allowed
to have open at once. On macOS, this limit is relatively low, at 256 per terminal window. If your
tests give you the Too many open files error, try increasing the limit with

ulimit -n <amount>

and document this need in your README.

Zhttp://blog.golang.org/cover

11

http://blog.golang.org/cover
http://blog.golang.org/cover

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

e cmd/tapestry/main.go

This is a Go program that serves as a console for interacting with Tapestry, creating nodes,
and querying state on the local node. We have kept the CLI simple but you are welcome to
improve it as you see fit.

You can build and run the CLI as follows:

$ cd $GOPATH/src/github.com/brown-cscil380-s20/<your-repo>/cmd/tapestry
$ go install
$ tapestry

Note: if running tapestry doesn’t run the CLI, you can run $GOPATH/bin/tapestry.

You can pass the following arguments:

— -p(ort) <int>: The port to start the server on. By default selects a random port.
— -c(onnect) "host:port": Address of an existing Tapestry node to connect to

— -d(ebug)=true: Enable or disable debug
You have the following set of commands built into the CLI:

— table
- Print this node’s routing table
— backpointers
- Print this node’s backpointers
— objects
- Print the object replicas stored on this node
— put <key> <value>
- Stores the provided key-value pair on the local node and advertises the key to the
tapestry
— lookup <key>
- Looks up the specified key in the tapestry and prints its location
— get <key>
- Looks up the specified key in the tapestry, then fetches the value from one of the
returned replicas
— remove <key>
- Remove the value stored locally for the provided key and stops advertising the key
to the tapestry
— list
- List the keys currently being advertised by the local node
— debug on|off
- Turn debug messages on or off
— leave
- Instructs the local node to gracefully leave the Tapestry
— kill
- Leaves the tapestry without graceful exit

12

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

— exit

- Quit the CLI

If you are confused about the behavior of any of these commands, feel free to refer to the
demo at /course/cs1380/pub/tapestry.

You are encouraged, but not required, to write client applications (that is, applications that use your
Tapestry implementation to store objects), using the tapestry/client package and its provided
methods, to test your implementation.

6 Getting Started

Remember, if you write code on a department machine, you must use gol.13 instead
of just go (ie gol.13 install or gol.13 test). Add alias go=gol.13 to your ~/.bashrc for
convenience.

gol.13 get -u -d github.com/brown-cscil380-s20/tapestry-<TeamName>

Use the command above to get your repo from GitHub Classroom. Fix the import path in
cmd/tapestry/main.go. Use gol.13 get -u ./... to fetch all dependency. Before you get
started, please make sure you have read over, set up, and understand all the support code.

We highly encourage you to work in groups of two, but we understand that in some situations a
group of three may be necessary. If you work in a group of three, you must implement an additional
feature. Additional features include publishing path caching, hotspot caching, hash salting, object
re-replication, and erasure coding. Stop by TA hours to learn more about what these are! If you
work in a group of three, you must contact the TAs and let them know you intend to work in a
group of three, and if you will be implementing additional features.

Working alone is not allowed for this project. If you do not have a partner for any reason, please
attempt to find one thru the piazza partner search functionality, and if this is not successful please
email the htas for assistance.

7 Handing in

You need to write a README documenting any bugs in your code, any extra features you added,
and anything else you think the TAs should know about your project. Document the test cases you
created and briefly describe the scenarios you covered.

When you are done, push to your GitHub repo. We will pull your latest commit in the master
branch for grading.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS1380 document by filling out the anonymous feedback form:

13

CS1380 Project 2: Tapestry 11:59 PM, Mar 15, 2020

http://cs.brown.edu/courses/cs138/s20/feedback.html|

14

http://cs.brown.edu/courses/cs138/s20/feedback.html

	Introduction
	Tapestry Protocol
	Identifying Nodes and Objects
	Root Nodes
	Selecting Root Nodes
	Example: A Tapestry Network's Objects and their Roots

	Tapestry Node State
	Routing Tables
	Backpointer Tables

	Prefix Routing
	Publishing and Retrieving Objects
	Adding Tapestry Nodes
	Acknowledged Multicast
	Backpointer Traversal

	Graceful Exits
	Fault Tolerance
	Errors While Routing
	Loss of Root Node
	Loss of Replicas
	Miscellaneous

	The Assignment
	Function Stubs
	Provided Functions
	Remote Procedure Call (RPC)
	A Note About Context

	Demo
	Testing
	Getting Started
	Handing in

