


To create a thread, one calls the pthread_create routine. This skeleton code for a server
application creates a number of threads, each to handle client requests. If pthread_createapplication creates a number of threads, each to handle client requests. If pthread_create
returns successfully (i.e., returns 0), then a new thread has been created that is now
executing independently of the caller. This new thread has an ID that is returned via the
first parameter. The second parameter is a pointer to an attributes structure that defines
various properties of the thread. Usually we can get by with the default properties, which
we specify by supplying a null pointer (we discuss this in more detail later). The third
parameter is the address of the routine in which our new thread should start its
execution. The last argument is the argument that is actually passed to the first
procedure of the thread.

If pthread_create fails, it returns a code indicating the cause of the failure.



An obvious limitation of the pthread_create interface is that one can pass only a single
argument to the first procedure of the new thread. In this example, we are trying to supplyargument to the first procedure of the new thread. In this example, we are trying to supply
code for the rlogind example of the previous module, but we run into a problem when we
try to pass two parameters to each of the two threads.

A further issue is synchronization with the termination of a thread. For a number of
reasons we’ll find it necessary for a thread to be able to suspend its execution until
another thread has terminated.



To pass more than one argument to the first procedure of a thread, we must somehow
encode multiple arguments as one. Here we pack two arguments into a structure, thenencode multiple arguments as one. Here we pack two arguments into a structure, then
pass the pointer to the structure. This technique at least does not produce any compile-
time errors, but it has a potential serious problem.



In the previous example, the in and out structures are local variables of the “mainline”
thread. Their addresses are passed to new threads. If the mainline thread returns from itsthread. Their addresses are passed to new threads. If the mainline thread returns from its
rlogind procedure before the new threads terminate, there is the danger that the new
threads may dereference their argument pointers into storage locations that are no longer
active. This would cause a serious runtime problem that might be difficult to track down.

However, if we can guarantee that the mainline thread does not return from rlogind until
after the new threads have terminated, then our means for passing multiple arguments is
safe. In the example above, the mainline thread places calls to pthread_join, which does
not return until the thread mentioned as its first argument has terminated. Thus the
mainline thread waits until the new threads terminate and then returns from rlogind.



A thread terminates either by calling pthread_exit or by returning from its first
procedure. In either case, it supplies a value that can be retrieved via a call (by some otherprocedure. In either case, it supplies a value that can be retrieved via a call (by some other
thread) to pthread_join. The analogy to process termination and the waitpid system call in
Unix is tempting and is correct to a certain extent—Unix’s wait, like pthread_join, lets one
caller synchronize with the termination of another. There is one important difference,
however: Unix has the notion of parent/child relationships among processes. A process
may wait only for its children to terminate. No such notion of parent/child relationship is
maintained with POSIX threads: one thread may wait for the termination of any other
thread in the process (though some threads cannot be “joined” by any thread—see the
next page). It is, however, important that pthread_join be called for each joinable
terminated thread—since threads that have terminated but have not yet been joined
continue to use up some resources, resources that will be freed once the thread has been
joined. The effect of multiple threads calling pthread_join is “undefined”—meaning that
what happens can vary from one implementation to the next.

One should be careful to distinguish between terminating a thread and terminating a
process. With the latter, all the threads in the process are forcibly terminated. So, if any
thread in a process calls exit, the entire process is terminated, along with its threads.
Similarly, if a thread returns from main, this also terminates the entire process, since
returning from main is equivalent to calling exit. The only thread that can legally return
from main is the one that called it in the first place. All other threads (those that did not
call main) certainly do not terminate the entire process when they return from their first
procedures, they merely terminate themselves.



If no thread calls exit and no thread returns from main, then the process should
terminate once all threads have terminated (i.e., have called pthread_exit or, for threadsterminate once all threads have terminated (i.e., have called pthread_exit or, for threads
other than the first one, have returned from their first procedure). If the first thread calls
pthread_exit, it self-destructs, but does not cause the process to terminate (unless no
other threads are extant).



If there is no reason to synchronize with the termination of a thread, then it is rather a
nuisance to have to call pthread_join. Instead, one can arrange for a thread to benuisance to have to call pthread_join. Instead, one can arrange for a thread to be
detached. Such threads “vanish” when they terminate—not only do they not need to be
joined with, but they cannot be joined with.



This slide shows some problems that can occur because of confusion about types.
Suppose pthread_create is called, as shown in the slide. The third argument, func, hasSuppose pthread_create is called, as shown in the slide. The third argument, func, has
been carefully cast so that the compiler will not issue warning messages. However, if the
definition of func is the first one, there will be a serious problem when the program is run!
The issue here is that the C compiler trusts you when you give it a cast—it’s up to you to
make certain that the trust is warranted.

Suppose the second definition of func is used. At least this one is a function. However,
there are two potential problems. The given definition returns nothing, though
pthread_create assumes it returns a void *. On most, if not all of today’s systems, this
probably is not a problem, though it is conceivable that the calling sequence for a function
that returns an argument is different from that for a function that doesn’t (e.g., space for
the return value might be allocated on the stack).

The second problem can definitely occur on some of today’s architectures. The argument
being passed to func is supplied as an int, though it will be passed as a void *. The routine
func, however, expects an int, though receives a void *. If there is no difference in size
between an int and a void *, this is not likely to be a problem. However, consider a 64-bit
machine on which a void * occupies 64 bits and an int occupies 32 bits. In our example,
the 32-bit int would be passed within a 64-bit void *, probably as the least-significant bits;
func would receive a 64-bit quantity, but would use only 32 bits of it. Which 32 bits? On
little-endian architectures, func would use the least significant 32 bits and things would
work, but there would be problems on big-endian architectures, where the most
significant bits would be used.

The correct way of doing things is shown in the third definition, in which func does
return something and there is an explicit (and legal) conversion from void * to int.



A number of properties of a thread can be specified via the attributes argument when
the thread is created. Some of these properties are specified as part of the POSIXthe thread is created. Some of these properties are specified as part of the POSIX
specification, others are left up to the implementation. By burying them inside the
attributes structure, we make it straightforward to add new types of properties to threads
without having to complicate the parameter list of pthread_create. To set up an attributes
structure, one must call pthread_attr_init. As seen in the next slide, one then specifies
certain properties, or attributes, of threads. One can then use the attributes structure as
an argument to the creation of any number of threads.

Note that the attributes structure only affects the thread when it is created. Modifying
an attributes structure has no effect on already-created threads, but only on threads
created subsequently with this structure as the attributes argument.

Storage may be allocated as a side effect of calling pthread_attr_init. To ensure that it is
freed, call pthread_attr_destroy with the attributes structure as argument. Note that if the
attributes structure goes out of scope, not all storage associated with it is necessarily
released—to release this storage you must call pthread_attr_destroy.



Among the attributes that can be specified is a thread’s stack size. The default attributes
structure specifies a stack size that is probably good enough for “most” applications. Howstructure specifies a stack size that is probably good enough for “most” applications. How
big is it? The default stack size is not mandated by POSIX. In Digital Unix 4.0, the default
stack size is 21,120 bytes, while in Solaris it is one megabyte. To establish a different
stack size, use the pthread_attr_setstacksize routine, as shown in the slide.

How large a stack is necessary? The answer, of course, is that it depends. If the stack
size is too small, there is the danger that a thread will attempt to overwrite the end of its
stack. There is no problem with specifying too large a stack, except that, on a 32-bit
machine, one should be careful about using up too much address space (one thousand
threads, each with a megabyte stack, use a fair portion of the address space).



In this series of slides we present a simple example of an (almost) complete program—
one that multiplies two matrices using a number of threads. Our algorithm is not anone that multiplies two matrices using a number of threads. Our algorithm is not an
example of an efficient matrix-multiplication algorithm, but it shows us everything that
must be included to make a multithreaded C program compile and run. Our approach is
to use the most straightforward technique for multiplying two matrices: each element of
the product is formed by directly taking the inner product of a row of the multiplier and a
column of the multiplicand. We employ multiple threads by assigning a thread to compute
each row of the product.

This slide shows the necessary includes, global declarations, and the beginning of the
main routine.



Here we have the remainder of main. It creates a number of threads, one for each row of
the result matrix, waits for all of them to terminate, then prints the results (this last stepthe result matrix, waits for all of them to terminate, then prints the results (this last step
is not spelled out). Note that we check for errors when calling pthread_create. (It is
important to check for errors after calls to almost all of the pthread routines, but we
normally omit it in the slides for lack of space.) For reasons discussed later, the pthread
calls, unlike Unix system calls, do not return -1 if there is an error, but return the error
code itself (and return zero on success). However, one can find the text associated with
error codes, just as for Unix-system-call error codes, by calling strerror.

So that the first thread is certain that all the other threads have terminated, it must call
pthread_join on each of them.



Here is the code executed by each of the threads. It’s pretty straightforward: it merely
computes a row of the result matrix.computes a row of the result matrix.

Note how the argument is explicitly converted from void * to int.



Here is how to compile a multithreaded C program in Linux. The definition of
_XOPEN_SOURCE is required to get “XOPEN single Unix” conformance, which is required_XOPEN_SOURCE is required to get “XOPEN single Unix” conformance, which is required
for a number of POSIX-threads features.



The mutual-exclusion problem involves making certain that two things don’t happen at
once. A non-computer example arose in the fighter aircraft of World War I. Due to aonce. A non-computer example arose in the fighter aircraft of World War I. Due to a
number of constraints (e.g., machine guns tended to jam frequently and thus had to be
close to people who could unjam them), machine guns were mounted directly in front of
the pilot. However, blindly shooting a machine gun through the whirling propeller was not
a good idea—one was apt to shoot oneself down. At the beginning of the war, pilots
politely refrained from attacking fellow pilots. A bit later in the war, however, the Germans
developed the tactic of gaining altitude on an opponent, diving at him, turning off the
engine, then firing without hitting the now-stationary propeller. Today, this would be
called coarse-grained synchronization. Later, the Germans developed technology that
synchronized the firing of the gun with the whirling of the propeller, so that shots were
fired only when the propeller blades would not be in the way. This is perhaps the first
example of a mutual-exclusion mechanism providing fine-grained synchronization.



Here we have two threads that are reading and modifying the same variable: both are
adding one to x. Although the operation is written as a single step in terms of C code, itadding one to x. Although the operation is written as a single step in terms of C code, it
generally takes three machine instructions, as shown in the slide. If the initial value of x
is 0 and the two threads execute the code shown in the slide, we might expect that the
final value of x is 2. However, suppose the two threads execute the machine code at
roughly the same time: each loads the value of x into its register, each adds one to the
contents of the register, and each stores the result into x. The final result, of course, is
that x is 1, not 2.



To solve our synchronization problem, we introduce mutexes—a synchronization
construct providing mutual exclusion. A mutex is used to insure either that only oneconstruct providing mutual exclusion. A mutex is used to insure either that only one
thread is executing a particular piece of code at once (code locking) or that only one
thread is accessing a particular data structure at once (data locking). A mutex belongs
either to a particular thread or to no thread (i.e., it is either locked or unlocked). A thread
may lock a mutex by calling pthread_mutex_lock. If no other thread has the mutex locked,
then the calling thread obtains the lock on the mutex and returns. Otherwise it waits until
no other thread has the mutex, and finally returns with the mutex locked. There may of
course be multiple threads waiting for the mutex to be unlocked. Only one thread can lock
the mutex at a time; there is no specified order for who gets the mutex next, though the
ordering is assumed to be at least somewhat “fair.”

To unlock a mutex, a thread calls pthread_mutex_unlock. It is considered incorrect to
unlock a mutex that is not held by the caller (i.e., to unlock someone else’s mutex).
However, it is somewhat costly to check for this, so most implementations, if they check at
all, do so only when certain degrees of debugging are turned on.

Like any other data structure, mutexes must be initialized. This can be done via a call to
pthread_mutex_init or can be done statically by assigning PTHREAD_MUTEX_INITIALIZER
to a mutex. The initial state of such initialized mutexes is unlocked. Of course, a mutex
should be initialized only once! (I.e., make certain that, for each mutex, no more than one
thread calls pthread_mutex_init.)



The routines pthread_mutex_init and pthread_mutex_destroy are supplied to initialize
and to destroy a mutex. (They do not allocate or free the storage for the primary mutexand to destroy a mutex. (They do not allocate or free the storage for the primary mutex
data structure, but they might allocate and free storage referred to by the mutex data
structure.) As with threads, an attribute structure encapsulates the various parameters
that might apply to the mutex. The routines pthread_mutexattr_init and
pthread_mutexattr_destroy control the initialization and destruction of these attribute
structures. One standard attribute is whether a mutex is for use only by threads in one
process or for use by threads in multiple processes (in which case the mutex must be
allocated in a region of shared memory). The former is the default, which can also be
specified by passing an attributes structure to pthread_mutex_init that has first been
initialized via a call to pthread_mutexattr_init and then modified via a call to
pthread_mutexattr_setpshared with shared set to PTHREAD_PROCESS_PRIVATE. To get
the latter behavior, one instead calls pthread_mutexattr_setpshared with shared set to
PTHREAD_PROCESS_SHARED. However, this behavior, though supported on Solaris, is
not supported on Linux, at least through Linux 2.4.



In this example our threads are using two mutexes to control access to two different
objects. Thread 1, executing proc1, first takes mutex 1, then, while still holding mutex 1,objects. Thread 1, executing proc1, first takes mutex 1, then, while still holding mutex 1,
obtains mutex 2. Thread 2, executing proc2, first takes mutex 2, then, while still holding
mutex 2, obtains mutex 1. However, things do not always work out as planned. If thread 1
obtains mutex 1 and, at about the same time, thread 2 obtains mutex 2, then if thread 1
attempts to take mutex 2 and thread 2 attempts to take mutex 1, we have a deadlock.



The slide shows what’s known as a resource graph: a directed graph with two sorts of
nodes, representing threads and mutexes (protecting resources). There’s an arc from anodes, representing threads and mutexes (protecting resources). There’s an arc from a
mutex to a thread if the thread has that mutex locked. There’s an arc from a thread to a
mutex if the thread is waiting to lock that mutex. Clearly, such a graph has a cycle if and
only if there is a deadlock.



The general problems of detecting deadlocked situations and avoiding deadlock are
difficult. No algorithms exist that are of practical use for multithreaded code (note thatdifficult. No algorithms exist that are of practical use for multithreaded code (note that
even an algorithm whose running time is linear in the total number of nodes would be too
expensive). See the textbook for a discussion of some non-practical algorithms.

However, by restricting the use of mutexes such that threads locking multiple mutexes
must do so in a prescribed order, we can assure that there are no cycles in the resource
graph and thus no chance of deadlock. Fortunately, this restriction can normally be easily
made.



One easy approach for assuring that mutexes are taken in a prescribed order is to
organize them into a hierarchy. If a thread is holding a lock at level i, it must not requestorganize them into a hierarchy. If a thread is holding a lock at level i, it must not request
another lock at level i or less: it must request only locks at levels greater than i.



As we’ve just discussed, the simplest (and best) approach to avoiding deadlock to make
certain that all threads that will hold multiple mutexes simultaneously obtain thesecertain that all threads that will hold multiple mutexes simultaneously obtain these
mutexes in a prescribed order. Ordinarily this can be done, but occasionally it might turn
out to be impossible. For example, we might not know which mutex to take second until
the first mutex has already been obtained. To avoid deadlock in such situations, we can
use the approach shown in the slide. Here thread 1, executing proc1, obtains the mutexes
in the correct order. Thread 2, executing proc2, must for some reason take the mutexes
out of order. If it is holding mutex 2, it must be careful about taking mutex 1. So, rather
than call pthread_mutex_lock, it calls pthread_mutex_trylock, which always returns
without blocking. If the mutex is available, pthread_mutex_trylock locks the mutex and
returns 0. If the mutex is not available (i.e., it is locked by another thread), then
pthread_mutex_trylock returns a nonzero error code (EBUSY). In the example, if mutex 1 is
not available, it is probably because it is currently held by thread 1. If thread 2 were to
block waiting for the mutex, we have an excellent chance for deadlock. So, rather than
block, thread 1 not only quits trying for mutex 1 but also unlocks mutex 2 (since thread 1
could well be waiting for it). It then starts all over again, first taking mutex 2, then mutex
1.



There are many synchronization problems that cannot be solved with mutexes alone.
For example, some require that code be executed only when certain conditions are true.For example, some require that code be executed only when certain conditions are true.
With a mutex, we can safely test if something is true, but we can’t arrange for a thread to
go to sleep if the condition is false and then be woken up when the condition becomes
true. We’ll soon see a number of examples where such conditional waiting is needed.



In the producer-consumer problem we have two classes of threads, producers and
consumers, and a buffer containing a fixed number of slots. A producer thread attemptsconsumers, and a buffer containing a fixed number of slots. A producer thread attempts
to put something into the next empty buffer slot, a consumer thread attempts to take
something out of the next occupied buffer slot. The synchronization conditions are that
producers cannot proceed unless there are empty slots and consumers cannot proceed
unless there are occupied slots.



Illustrated in the slide is a simple pseudocode construct, the guarded command, that
we use to describe how various synchronization operations work. The idea is that thewe use to describe how various synchronization operations work. The idea is that the
code within the square brackets is executed only when the guard (which could be some
arbitrary boolean expression) evaluates to true. Furthermore, this code within the square
brackets is executed atomically, i.e., the effect is that nothing else happens in the
program while the code is executed. Note that the code is not necessarily executed as
soon as the guard evaluates to true: we are assured only that when execution of the code
begins, the guard is true.



Another synchronization construct is the semaphore, designed by Edsger Dijkstra in
the 1960s. A semaphore behaves as if it were a nonnegative integer, but it can bethe 1960s. A semaphore behaves as if it were a nonnegative integer, but it can be
operated on only by the semaphore operations. Dijkstra defined two of these: P (for
prolagen, a made-up word derived from proberen te verlagen, which means “try to
decrease” in Dutch) and V (for verhogen, “increase” in Dutch). Their semantics are shown
in the slide.

We think of operations on semaphores as being a special case of guarded execution—a
special case that occurs frequently enough to warrant a highly optimized
implementation.





Here’s a solution for the producer/consumer problem using semaphores—note that it
works only with a single producer and a single consumer.works only with a single producer and a single consumer.



Here is the POSIX interface for operations on semaphores. (This is not a typo—the
blasted “pthread_” prefix really is not used here, since the semaphore operations comeblasted “pthread_” prefix really is not used here, since the semaphore operations come
from a different POSIX specification—1003.1b. Note also the need for the header file,
semaphore.h) When creating a semaphore (sem_init), rather than supplying an attributes
structure, one supplies a single integer argument, pshared, which indicates whether the
semaphore is to be used only by threads of one process (pshared = 0) or by multiple
processes (pshared = 1). The third argument to sem_init is the semaphore’s initial value.
All the semaphore operations return zero if successful; otherwise they return an error
code.



Here is the producer-consumer solution implemented with POSIX semaphores.



Condition variables are another means for synchronization in POSIX; they represent
queues of threads waiting to be woken by other threads and can be used to implementqueues of threads waiting to be woken by other threads and can be used to implement
guarded commands, as shown in the slide. Though they are rather complicated at first
glance, they are even more complicated when you really get into them.

A thread puts itself to sleep and joins the queue of threads associated with a condition
variable by calling pthread_cond_wait. When it places this call, it must have some mutex
locked, and it passes the mutex as the second argument. As part of the call, the mutex
is unlocked and the thread is put to sleep, all in a single atomic step: i.e., nothing can
happen that might affect the thread between the moments when the mutex is unlocked
and when the thread goes to sleep. Threads queued on a condition variable are released
in first-in-first-out order. They are released in response to calls to pthread_cond_signal
(which releases the first thread in line) and pthread_cond_broadcast (which releases all
threads). However, before a released thread may return from pthread_cond_wait, it first
relocks the mutex. Thus only one thread at a time actually returns from
pthread_cond_wait. If a call to either routine is made when no threads are queued on the
condition variable, nothing happens — the fact that a call had been made is not
remembered.

So far, though complicated, the description is rational. Now for the weird part: a thread
may be released from the condition-variable queue at any moment, perhaps
spontaneously, perhaps due to sun spots. Thus it’s extremely important that, after
pthread_cond_wait returns, that the caller check to make sure that it really should have
returned. The reason for this weirdness is that it allows a fair amount of latitude in
implementations. However, the Linux implementation behaves rationally, i.e., as in the
first paragraph.



Setting up condition variables is done in a similar fashion as mutexes: The routines
pthread_cond_init and pthread_cond_destroy are supplied to initialize and to destroy apthread_cond_init and pthread_cond_destroy are supplied to initialize and to destroy a
condition variable. They may also be statically initialized by setting them to
PTHREAD_COND_INITIALIZER in their declarations. As with mutexes and threads,
default attributes may be specified by supplying a zero. The routines
pthread_condattr_init and pthread_condattr_destroy control the initialization and
destruction of their attribute structures. However, they are useless on Linux, since no
attributes for condition variables are supported.



Let’s look at another standard synchronization problem—the readers-writers problem.
Here we have some sort of data structure to which any number of threads may haveHere we have some sort of data structure to which any number of threads may have
simultaneous access, as long as they are just reading. But if a thread is to write in the
data structure, it must have exclusive access.



Here we again use guarded commands to describe our solution.



We’ve attached assertions to our pseudocode to help make it clearer that our code is
correct. The use of assertions is a valuable technique (even in real code), particularly forcorrect. The use of assertions is a valuable technique (even in real code), particularly for
multithreaded programs.



Now we convert the pseudocode to real code. We use two condition variables, readersQ
and writersQ, to represent queues of readers and writers waiting for notification thatand writersQ, to represent queues of readers and writers waiting for notification that
their respective guards are true.



It turns out that our solution to the readers-writers problem has a flaw: writers may
have to wait indefinitely before being allowed to write. This is because as long as there ishave to wait indefinitely before being allowed to write. This is because as long as there is
a reader reading, further readers are allowed in and writers are prevented from writing.

Though one might argue that the best solution is one that is fair to both readers and
writers, what is usually preferred is one that favors writers—i.e., readers requesting
permission to read must yield to writers, but writers do not yield to readers.

This slide gives pseudocode using guarded commands for a new solution to the
problem, a writers-priority solution. Writers indicate their intention to write by
incrementing writers. We use the variable active_writers to indicate how many writers are
currently writing.



In this slide we’ve taken the pseudocode for the writers-priority reader and translated it
into legal POSIX.into legal POSIX.



Here’s the POSIX version of the writer code. Note the use of pthread_cond_broadcast:
we use it to insure that all currently waiting readers are released.we use it to insure that all currently waiting readers are released.



With POSIX 1003.1j support for readers-writers locks was finally introduced. The
almost complete API is shown in the slide (what’s missing are the operations onalmost complete API is shown in the slide (what’s missing are the operations on
attributes). As might be expected, readers-writers locks can be statically initialized with
the constant PTHREAD_RWLOCK_INITIALIZER. The “timedrwlock” routines allow one to
wait until the lock is available or a time-limit is exceeded, whichever comes first.



A barrier is a conceptually simple and very useful synchronization construct that,
unfortunately, is not part of the POSIX-threads API (nor of the Win32-threads API). Aunfortunately, is not part of the POSIX-threads API (nor of the Win32-threads API). A
barrier is established for some predetermined number of threads; threads call the
barrier’s wait routine to enter it; no thread may exit the barrier until all threads have
entered it.



Is this a correct solution?



How about this?



If pthread_cond_wait had sane semantics (i.e., if threads were released only in response
to calls to pthread_cond_signal and pthread_cond_broadcast), this would work.to calls to pthread_cond_signal and pthread_cond_broadcast), this would work.



Implementing barriers in POSIX threads is not trivial. Since count, the number of
threads that have entered the barrier, will be reset to 0 once all threads have entered, wethreads that have entered the barrier, will be reset to 0 once all threads have entered, we
can’t use it in the guard. But, nevertheless, we still must wakeup all waiting threads as
soon as the last one enters the barrier. We accomplish this with the generation global
variable and the my_generation local variable. An entering thread increments count and
joins the condition-variable queue if it’s still less than the target number of threads.
However, before it joins the queue, it copies the current value of generation into its local
my_generation and then joins the queue of waiting threads, via pthread_cond_wait, until
my_generation is no longer equal to generation. When the last thread enters the barrier, it
increments generation and wakes up all waiting threads. Each of these sees that its
private my_generation is no longer equal to generation, and thus the last thread must
have entered the barrier.



As part of POSIX 1003.1j, barriers were introduced. Unlike other POSIX-threads
objects, they cannot be statically initialized; one must call pthread_barrier_init andobjects, they cannot be statically initialized; one must call pthread_barrier_init and
specify the number of threads that must enter the barrier. In some applications it might
be necessary for one thread to be designated to perform some sort function on behalf of
all of them when all exit the barrier. Thus pthread_barrier_wait returns
PTHREAD_BARRIER_SERIAL_THREAD in one thread and zero in the others on success.


