#### CSCI-1680 Network Layer: Wrapup

**Rodrigo Fonseca** 



Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John Jannotti

## Administrivia

- Homework 2 is due today
  - So we can post solutions before the midterm!
- Exam on Thursday
  - All content up to today (no TCP!)
  - Questions similar to the homework
  - Book has some exercises, samples on the course web page



## **Today: IP Wrap-up**

#### • IP Service models

- Unicast, Broadcast, Anycast, Multicast

- IPv6
  - Tunnels



## **Different IP Service Models**

- Broadcast: send a packet to *all* nodes in some subnet. "One to all"
  - 255.255.255.255 : all hosts within a subnet, *never* forwarded by a router
  - "All ones host part": broadcast address
    - Host address | (255.255.255.255 & ~subnet mask)
    - E.g.: 128.148.32.143 mask 255.255.255.128
    - ~mask = 0.0.0.127 => Bcast = 128.148.32.255
- Example use: DHCP
- Not present in IPv6
  - Use multicast to link local all nodes group



#### Anycast

- Multiple hosts may share the same IP address
- "One to one of many" routing
- Example uses: load balancing, nearby servers
  - DNS Root Servers (e.g. f.root-servers.net)
  - Google Public DNS (8.8.8.8)
  - IPv6 6-to-4 Gateway (192.88.99.1)



## **Anycast Implementation**

- Anycast addresses are /32s
- At the BGP level
  - Multiple ASs can advertise the same prefixes
  - Normal BGP rules choose one route
- At the Router level
  - Router can have multiple entries for the same prefix
  - Can choose among many
- Each packet can go to a different server
  - Best for services that are fine with that (connectionless, stateless)



## Multicast

- Send messages to many nodes: "one to many"
- Why do that?
  - Snowcast, Internet Radio, IPTV
  - Stock quote information
  - Multi-way chat / video conferencing
  - Multi-player games
- What's wrong with sending data to each recipient?
  - Link stress
  - Have to know address of all destinations



## **Multicast Service Model**

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)

224.x.x.x to 229.x.x.x

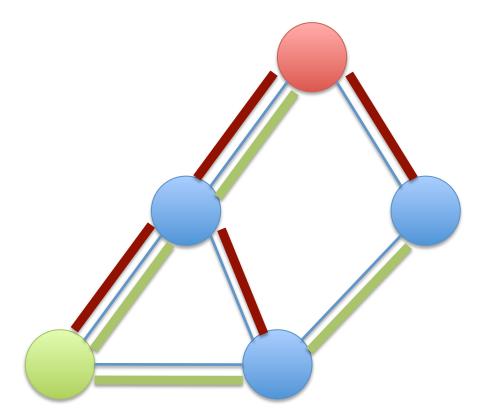
– 28 bits left for group address



## LAN Multicast

- Easy on a shared medium
- Ethernet multicast address range:
  - 01:00:5E:00:00:00 to 01:00:5E:7f:ff:ff
- Set low 23 bits of Ethernet address to low bits of IP address
  - (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?




## **Use Distribution Trees**

- Source-specific trees:
  - Spanning tree over recipients, rooted at each source
  - Best for each source
- Shared trees:
  - Single spanning tree among all sources and recipients
  - Hard to find one shared tree that's best for many senders
- State in routers much larger for source-specific



#### **Source vs Shared Trees**





## **Building the Tree: Host to Router**

- Nodes tell their local routers about groups they want to join
  - IGMP, Internet Group Management Protocol (IPv4)
  - MLD, Multicast Listener Discovery (IPv6)
- Router periodically polls LAN to determine memberships
  - Hosts are not required to leave, can stop responding



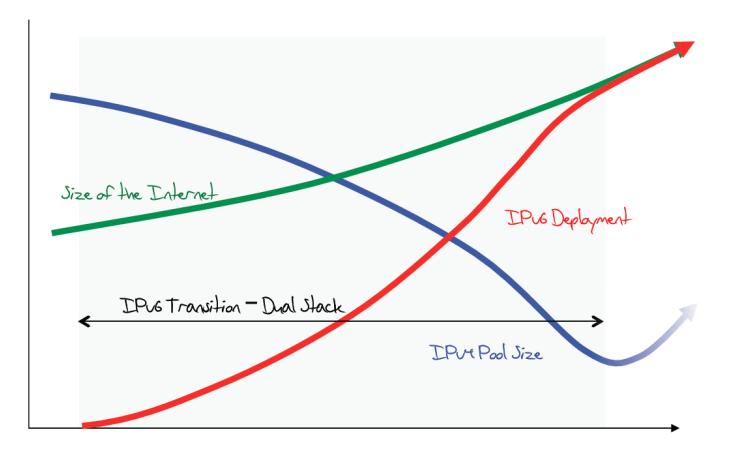
## **Building the Tree across networks**

- Routers maintain multicast routing tables
  - Multicast address -> set of interfaces, or
  - <Source, Multicast address> -> set of interfaces
- Critical: only include interfaces where there are downstream recipients



## **Practical Considerations**

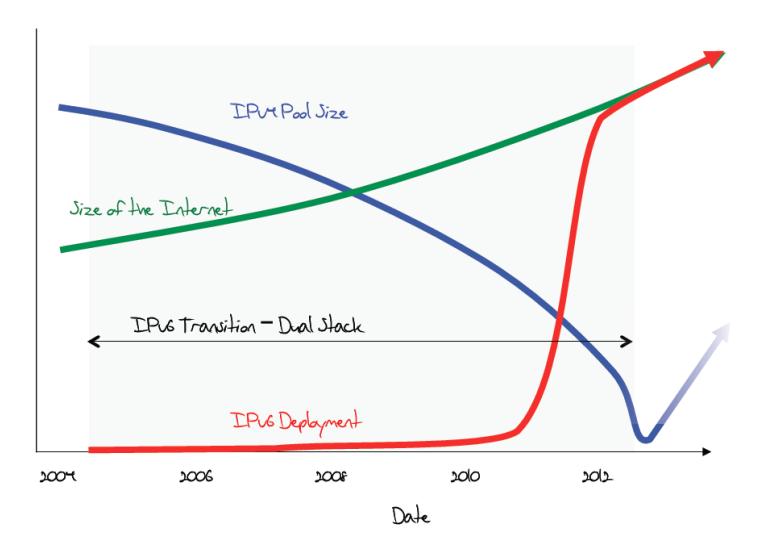
- Multicast protocols end up being quite complex
- Introduce a lot of router state
- Turned off on most routers
- Mostly used within domains
  - In the department: Ganglia monitoring infrastructure
  - IPTV on campus
- Alternative: do multicast in higher layers




## IPv6

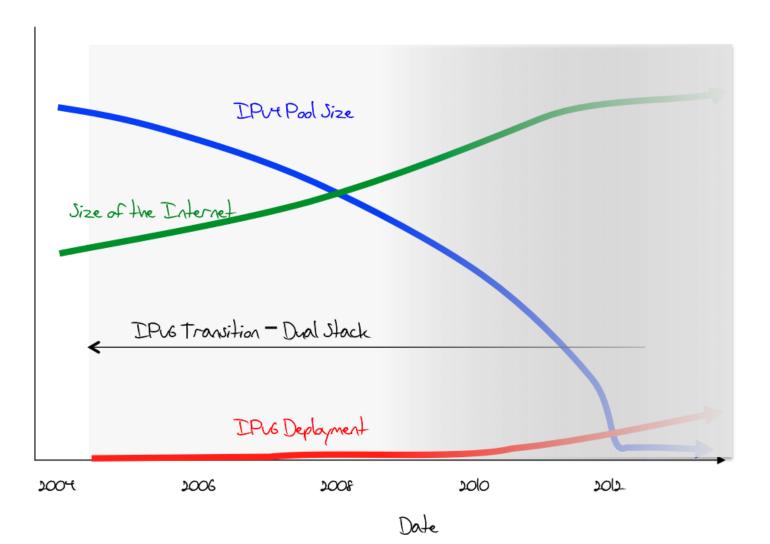
- Main motivation: IPv4 address exhaustion
- Initial idea: larger address space
- Need new packet format:
  - REALLY expensive to upgrade all infrastructure!
  - While at it, why don't we fix a bunch of things in IPv4?
- Work started in 1994, basic protocol published in 1998




#### The original expected plan

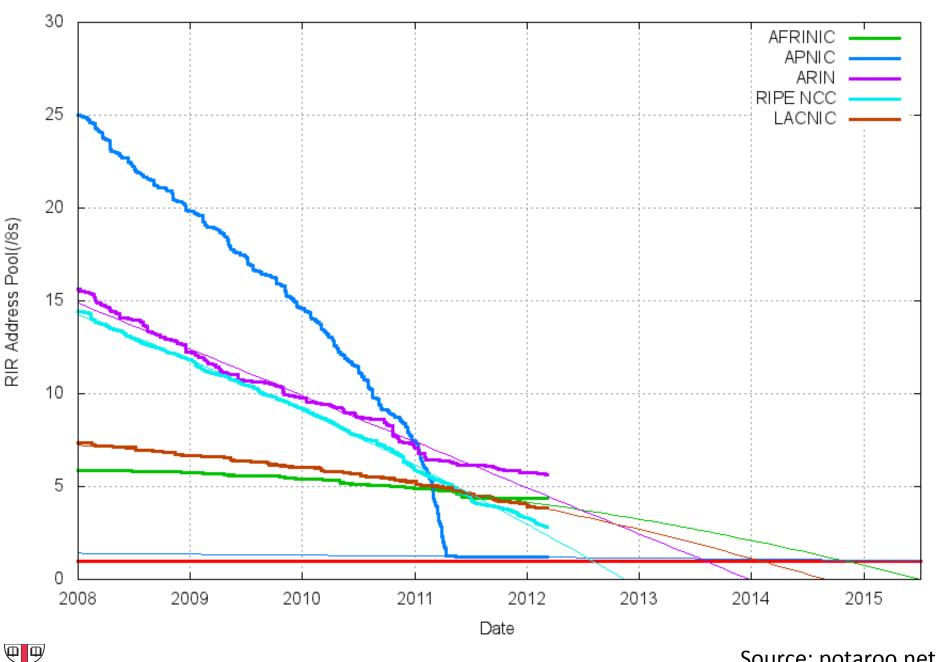





From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html

#### The plan in 2011






### What is really happening





RIR IPv4 Address Run-Down Model



Source: potaroo.net

### **Current Adoption (as seen by Google)**





Source: http://www.google.com/ipv6/statistics.html

## **IPv6 Key Features**

- 128-bit addresses
  - Autoconfiguration
- Simplifies basic packet format through *extension headers* 
  - 40-byte base header (fixed)
  - Make less common fields optional
- Security and Authentication



#### **IPv6 Address Representation**

- Groups of 16 bits in hex notation 47cd:1244:3422:0000:0000:fef4:43ea:0001
- Two rules:
  - Leading 0's in each 16-bit group can be omitted
     47cd:1244:3422:0:0:fef4:43ea:1
  - One contiguous group of 0's can be compacted
     47cd:1244:3422::fef4:43ea:1



## IPv6 Addresses

- Break 128 bits into 64-bit network and 64-bit interface
  - Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example
- Types of addresses
  - All 0's: unspecified
  - 000…1: loopback
  - ff/8: multicast
  - fe8/10: link local unicast
  - fec/10: site local unicast



– All else: global unicast

#### IPv6 Header





### IPv6 Header Fields

- Version: 4 bits, 6
- Class: 8 bits, like TOSS in IPv4
- Flow: 20 bits, identifies a *flow*
- Length: 16 bits, datagram length
- Next Header, 8 bits: ...
- Hop Limit: 8 bits, like TTL in IPv4
- Addresses: 128 bits
- What's missing?
  - No options, no fragmentation flags, *no checksum*



# **Design Philosophy**

#### • Simplify handling

- New option mechanism (fixed size header)
- No more header length field

#### • Do less work at the network (why?)

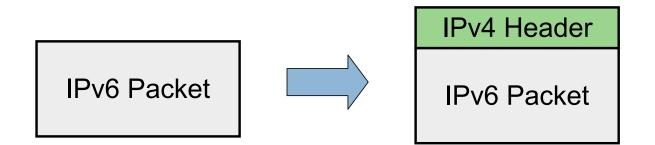
- No fragmentation
- No checksum

#### • General flow label

- No semantics specified
- Allows for more flexibility
- Still no accountability

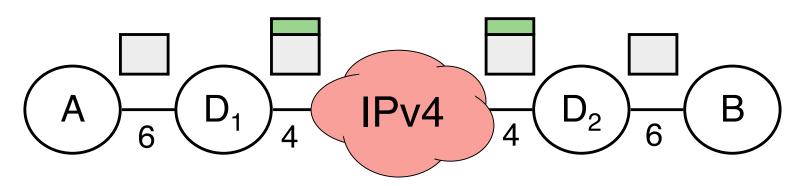


## Interoperability


- RFC 4291
- Every IPv4 address has an associated IPv6 address
- Simply prefix 32-bit IPv4 address with 96 bits of 0

   E.g., ::128.148.32.2
- Two IPv6 endpoints must have IPv6 stacks
- Transit network:
  - v6 v6 v6 : ✔
  - $-v4 v4 v4 : \checkmark$
  - $-v4 v6 v4 : \checkmark$

-v6 - v4 - v6 :


## **IP** Tunneling

- Encapsulate an IP packet inside another IP packet
- Makes an end-to-end path look like a single IP hop





### IPv6 in IPv4 Tunneling



- Key issues: configuring the tunnels
  - Determining addresses
  - Determining routes
  - Deploying relays to encapsulate/forward/decapsulate
- 6to4 is a standard to automate this
  - Deterministic address generation
  - Anycast 192.88.99.1 to find gateway into IPv6 network
  - Drawbacks: voluntary relays, requires public endpoint address

## Other uses for tunneling

- Virtual Private Networks
- Use case: access CS network from the outside
- Set up an encrypted TCP connection between your computer and Brown's OpenVPN server
- Configure routes to Brown's internal addresses to go through this connection
- Can connect two remote sites securely



### **Extension Headers**

- Two types: hop-by-hop and end-to-end
- Both have a next header byte
- Last next header also denotes transport protocol
- Destination header: intended for IP endpoint
  - Fragment header
  - Routing header (loose source routing)
- Hop-by-hop headers: processed at each hop
  - Jumbogram: packet is up to 2<sup>32</sup> bytes long!



### **Example Next Header Values**

- 0: Hop by hop header
- 1: ICMPv4
- 4: IPv4
- 6:TCP
- 17: UDP
- 41: IPv6
- 43: Routing Header
- 44: Fragmentation Header
- 58: ICMPv6



## **Fragmentation and MTU**

- Fragmentation is supported only on end hosts!
- Hosts should do MTU discovery
- Routers will not fragment: just send ICMP saying packet was too big
- Minimum MTU is 1280-bytes
  - If some link layer has smaller MTU, must interpose fragmentation reassembly underneath



#### **Current State**

- IPv6 Deployment has been slow
- Most end hosts have dual stacks today (Windows, Mac OSX, Linux, \*BSD, Solaris)
- 2008 Google study:
  - Less than 1% of traffic globally
- Requires all parties to work!
  - Servers, Clients, DNS, ISPs, all routers
- IPv4 and IPv6 will coexist for a long time



#### Next time: Midterm

- After that, transport layer and above!
  - UDP, TCP, Congestion Control
  - Application protocols

- ...

