
CSCI-1680
Wrap-up Lecture

Rodrigo Fonseca

With	
 some	
 material	
 from	
 Jen	
 Rexford	

Administrivia

•  Today is the last class!
•  Two more things to go:

–  Final project, due this Friday
–  Final Exam: ursday, Dec 13th, 9AM-12PM, CIT 165

•  How do you study?
–  Any covered topic is fair game, but more emphasis on

content given aer midterm (TCP on)
–  Lecture slides, homeworks, plus relevant sections of

the book
–  If in doubt, no topic not covered in class will be on the

exam

What you (hopefully) learned from this course

•  Skill: Network programming
–  C programming (most of you)
–  Socket programming
–  Server programming
–  Implementing protocols

•  Knowledge: How the Internet Works
–  IP Protocol suite
–  Internet Architecture
–  Applications (Web, DNS, P2P, …)

•  Insight: key concepts
–  Protocols
–  Layering
–  Naming

Today

•  Cut across protocols, identify principles
•  Internet Architecture

–  Virtues and challenges going forward!

Networking Principles

•  We saw many layers and protocols, but some
principles are common to many

•  Some are general CS concepts
–  Hierarchy
–  Indirection
–  Caching
–  Randomization

•  Some are somewhat networking-speci!c
–  Layering
–  Multiplexing
–  End-to-end argument
–  So-state

Layering

•  Strong form of encapsulation, abstraction
•  Each layer has three interfaces:

–  Services provided to upper layer
–  Protocol to communicate with peer at the same layer
–  Using the services of the lower layer

•  Provided interface hides all details of internal
interface and lower layers

•  Can be highly recursive
–  E.g., IP over DNS, File system over Gmail!

Layering on the Internet

7	

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

router router

HTTP message

TCP segment

IP packet IP packet IP packet

Ethernet frame Ethernet frame SONET frame

Layering: IP as a Narrow Waist

•  Many applications protocols on top of UDP & TCP
•  IP works over many types of networks
•  is is the “Hourglass” architecture of the Internet.

–  If every network supports IP, applications run over many
different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Layering: Data Encapsulation

•  One layer’s data is the (opaque) payload of the next
Stream (Application)
 Segments (TCP)
 Packets (IP)
 Frames (Ethernet)
 Encoding: bits -> chips
 Modulation: chips -> signal variations

Ethernet	
 Frame	
 IP	
 Packet	
 TCP	
 Segment	
 Applica@on	
 data	

Protocols

•  Speci!cations for communication
–  Data formats
–  Behaviors (FSMs)

•  Allow
–  Interoperability
–  Independent implementations
–  Don’t need to specify everything

•  E.g., TCP Congestion Control

•  Postel’s Robustness Principle
–  "Be liberal in what you accept, and conservative in

what you send” (RFC 1122)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Multiplexing

•  Multiple streams/#ows can share at different
levels
–  Important to be able to de-multiplex: need naming

•  Sharing
–  Cost: infrastructure sharing
–  Access: single channel sharing
–  Reuse: Implementation sharing

Multiplexing: Cost

Multiple #ows/streams can share
a link/path
–  Packet switching
–  Circuit switching

•  Issues
–  Coordinate access

•  In time, in space, in frequency

–  De-multiplexing (name, id) (a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

Multiplexing: Access

•  Sharing a single channel
•  E.g.,

–  NAT: multiple nodes share a single IP address
•  De-multiplexing: NAT uses 5-tuple to disambiguate

–  SSH port forwarding
•  Only port 22 is open, can tunnel other ports
•  ssh other.host.com –L 5900:other.host.com:5900

–  VPN

Multiplexing: Reuse

•  No need to re-implement functionality
–  Several streams/$ows can use the services of a protocol

•  E.g.:
–  IP/ARP/AppleTalk on Ethernet: demux EtherType
–  TCP/UDP/DCCP/… on IP: demux Protocol ID
–  HTTP/SIP/SMTP/… on TCP/UDP: demux on Port
–  Multiple hosts on one HTTP server: demux on Host: %eld

End-to-End Argument

“e end knows best”

“e function in question can completely and correctly be
implemented only with the knowledge and help of the
application standing at the end points of the
communication system. erefore, providing that
questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete
version of the function provided by the communication
system may be useful as a performance enhancement.)”

End-­‐to-­‐end	
 arguments	
 in	
 system	
 design.	
 Saltzer,	
 Reed,	
 and	
 Clark.	
 Technology	
 (100),	
 1984	

End-to-end argument

•  Reliability:
–  File transfer application: even through TCP, has to

check for %le correctness (e.g., BitTorrent hashes)
–  So reliability by the transport layer is redundant
–  Would work even on top of UDP

•  Multihop wireless:
–  10 hops, 10% chance of packet loss per hop:
–  Chance of success: 0.910 ~ 35%
–  If you do up to 3 retransmissions per hop, loss drops

to 0.13 = 0.001 per hop => chance of success 0.99910 ~
99% !
•  But can’t make it 0 => still require end-to-end check!

End-to-end argument: examples

•  Encryption: need assurance of no tampering,
can only prove if the end point encrypted the
message
–  Doesn’t matter if the network automatically encrypts

•  Duplicate suppression
–  “Don’t click submit twice”: even though TCP is

underneath, two requests will be different data for the
network, application must enforce at-most-once

•  Automatic recovery
–  Airline reservation: rather than guaranteeing that

every request can survive system crashes, rely on
operators to retry.

End-to-end argument

•  Instinctively we like modularity and clean interfaces
–  Which means putting functionality in low-level abstractions

•  Examples: reliability, in-order delivery, security
•  But some applications won’t be able to rely on this

–  Low level functionality might be redundant
–  Or might be insufficient
–  Or might be useless for some applications
–  Or might be harmful – e.g., real-time audio over a reliable, in-

order delivery channel
•  Use as a guiding principle or where to place

functionality

Hierarchy

•  Scalability of large systems
–  Cannot store all information everywhere
–  Cannot centrally control every component

•  Hierarchy as a way to manage scale
–  Divide large system in smaller pieces
–  Summarize information about each piece

•  Hierarchy as a way to divide control
–  Decentralized management of pieces

•  Many examples of hierarchy in the Internet

Hierarchy Examples: IP Routing

•  IP Addressing
–  Hierarchical assignment of address blocks
–  IANA -> Regional Internet Registries -> ISPs
–  Decentralized control

•  Topology
–  (Roughly) correlated with addressing
–  Allows aggregation (CIDR)

•  Brown owns 128.148.0.0/16

–  Decreases size of routing tables!

Hierarchy Examples: IP Routing

•  AS-level Topology
–  Separates intra and inter-domain routing
–  ASs have own economic interests
–  Delegation of control

•  Policy in inter-domain routing
•  Complete control of intra-domain routing

•  Hierarchical Topology
–  Transit, Multi-homed, Stub ASs B

A
C

X

Y
Z

Hierarchy Examples: DNS

•  Hierarchical name database
•  Allows delegation of control

–  Each organization controls a sub-tree
–  May delegate control

•  Allows scaling of the infrastructure
–  A DNS server only needs to know about its sub-

domains

Hierarchy Example: MAC Addresses

•  Ethernet MAC addresses are globally unique
identi!ers
–  First 3 bytes: manufacturer, allocated by consortium
–  Last 3 bytes: allocated by manufacturer

Indirection
•  Referencing by name
•  “Any problem in computer science can be solved with

another level of indirection... Except for the problem of
too many layers of indirection” David Wheeler

•  Goes hand in hand with the layering abstractions
•  Bene!ts
–  Human convenience
–  Makes underlying changes transparent

•  Examples
–  Host names versus IP addresses

Names versus addresses

•  Names are easier to remember
•  Addresses can change underneath
•  Name could map to multiple IP addresses

–  E.g. load balancing, or geographically closer server
•  Multiple names for the same address
•  Need a way to map one to the other

–  DNS hierarchy

Many Translations

•  DHCP: Given a MAC Address, assign an IP address
–  Uses IP broadcast to %nd server

•  ARP: Given an IP address, !nd Ethernet MAC
Addresses
–  Uses Link Layer broadcast to %nd node

•  DNS: Given a Name, !nd an IP address
–  Uses IP unicast/anycast to well known roots, to bootstrap
–  Relies on IP routing infrastructure, DNS hierarchy

•  DHT: Given a key, !nd a node
–  Uses IP unicast plus efficient $at namespace routing

Caching

•  Duplicate data stored elsewhere
–  Reduce latency for accessing the data
–  Reduce the load on other parts of the system

•  Oen quite effective
–  Locality of reference: temporal locality and small set of

popular items
•  Examples:

–  Web caching
–  DNS caching
–  ARP caching
–  Learning bridges

DNS Caching

•  What is cached?
–  Mapping of names to IP addresses
–  Lookups that failed
–  IP addresses of name servers

•  Reduces latency
•  Reduces load on hierarchy
•  Why is it effective?

–  Mostly read database
–  Doesn’t change very oen
–  Popular sites are visited oen

HTTP Caching

•  What is cached?
–  Web objects

•  Where is it cached?
–  Browser, proxy-cache, main memory on server

•  Reduces latency, load
•  What contributes to high hit rates?

–  Cacheable content (mostly static)
–  Sharing the cache among multiple users
–  Small amount of popular content

Randomization

•  Distributed adaptive algorithms
•  Risk of synchronization

–  Many parties respond to the same conditions in the
same way

–  May lead to bad aggregate behavior
•  Randomization can de-synchronize

–  Example: Ethernet backoff mechanism
–  Example: Random Early Drop

Interes@ng	
 (extra)	
 read:	
 “The	
 Synchroniza@on	
 of	
 Periodic	
 Rou@ng	
 Messages”,	
 	

Sally	
 Floyd	
 and	
 Van	
 Jacobson,	
 Sigcomm	
 1993	

So State
•  State is stored in nodes by network protocols

–  E.g., a mapping, routing entry, cached object
•  Key issue: how to deal with changes?
•  Hard state: “valid unless told otherwise”

–  “Managed” by originator of state
–  Kept consistent, explicit invalidation

•  So state: “valid if fresh”
–  Removed by storing node on timeout
–  Periodically refreshed as needed

•  May need extra cost (on-demand revalidation or check)
–  Can be seen as a hint

•  So state reduces complexity
–  At the cost of some unpredictability

So state examples

•  DNS Caching
–  TTL
–  Can be wrong, check with origin on error

•  Alternative
–  Origin keeps track of copies
–  Refresh copies on change in mapping

•  Cache coherence is hard
–  And expensive at scale!

•  Others
–  DHCP lease

Internet Architecture

•  A Radical Idea
–  Dumb network
–  Lowest common denominator (best-effort service)
–  No reservations: statistical multiplexing, packets

•  Amazingly successful
–  Architecture has scaled in size…
–  Many orders of magnitude difference in bandwidth,

latency, jitter, reliability, …

Growth of the Internet

Source:	
 Miguel	
 Angel	
 Todaro	

Original Design Principles of the Internet

•  David Clark, 1988 “e Design Philosophy of the
DARPA Internet Protocols”

•  Fundamental Goal:
–  Effective technique for multiplexed utilization of existing

interconnected networks
•  Secondary Goals:

–  Communication should continue despite loss of nodes
–  Multiple types of service
–  Variety of networks
–  Distributed management of resources
–  Cost effective
–  Low-effort host attachment
–  Resources must be accountable

But… ere are BIG Challenges

•  Designed in a different environment, with
different uses
–  Identity / Accountability
–  Access model
–  Security
–  Challenges to openness

Identity

•  Leads to
–  Spoo%ng
–  Spam
–  Denial of service

•  Ampli%cation
attacks

–  Route hijacking
–  DNS cache

poisoning

Protocols designed based on trust

•  at you don’t spoof your address
–  MAC spoo%ng, IP spoo%ng, email spoo%ng

•  at you are who you say you are
–  BGP announcements, Websites, DNS servers

•  at you adhere to the protocol
–  Ethernet exponential backoff aer a collision
–  TCP-friendliness

•  at protocol speci!cations are public
–  So that others can build interoperable implementations

Nobody in charge

•  Traffic traverses many Ass
–  Who’s at fault when things go wrong?
–  How do you upgrade functionality?

•  Anyone can add any application
–  Whether it is legal, moral, good, well-behaved, etc.

•  Nobody knows how big the Internet is
•  Spans many countries

–  So no government can be in charge

Access Models

•  “On by default”
–  Any node can talk to any node (IP, email, web)
–  Allows for Denial of Service Attacks!
–  Can use a %rewall…

•  But won’t stop attackers from saturating the paths to you!

Host versus Data centric

•  IP is host-to-host protocol
telnet myhost.mycompany.com

•  Today
–  Users want content, not servers
–  Web: many redirections, lots of URLs are not “human readable”

 http://a7.sphotos.ak.cdn.net/hphotos-ak-
ash1/167898_788691982781_7555_40937029_2012165_n.jpg

–  “Lookup” through search engines
–  BitTorrent: torrent %le describes content, speci%c peers are

irrelevant
•  Can the architecture support this better?

Security

•  Last class
•  Huge challenges

–  Public Key Infrastructure
–  S-BGP, DNSSEC, IPSec

•  Spoo!ng, Poisoning, Phishing
•  Denial of Service attacks
•  Cyber-security

–  Cyber-war (talk to John Savage)

Challenges to Openness

•  Walled Gardens
–  E.g., Facebook, Google
–  Convenient, easy to use, network effects
–  Intrusive data collection
–  No control of own data, hard to migrate
–  Centralization of trust
–  Proprietary protocols

•  Network Neutrality
–  Should all packets be treated equally?
–  ISPs are commoditized, want to make money
–  Can prioritize own traffic, charge to carry other traffic
–  Very hot debate topic

Other Challenges

•  Extreme mobility
–  Mobile with no %xed attachment point
–  How to maintain efficient routing?

•  Large number of nodes
–  Billions of small networked devices (e.g., sensors)
–  “Internet of ings”

•  Sometimes-connected nodes
–  Developing regions with intermittent connectivity

•  Real-time applications
–  VoIP, gaming, IPTV

Future of the Internet

•  Can we !x these problems
–  Security
–  Performance
–  Upgradability
–  Manageability
–  … your favorite ailment here …

•  Without disrupting a critical infrastructure?

•  Open technical and policy question…

ank you!

