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Administrivia 

•  Today is the last class! 
•  Two more things to go: 

–  Final project, due this Friday 
–  Final Exam: ursday, Dec 13th, 9AM-12PM, CIT 165 

•  How do you study? 
–  Any covered topic is fair game, but more emphasis on 

content given aer midterm (TCP on) 
–  Lecture slides, homeworks, plus relevant sections of 

the book 
–  If in doubt, no topic not covered in class will be on the 

exam 



What you (hopefully) learned from this course 

•  Skill: Network programming 
–  C programming (most of you) 
–  Socket programming 
–  Server programming 
–  Implementing protocols 

•  Knowledge: How the Internet Works 
–  IP Protocol suite 
–  Internet Architecture 
–  Applications (Web, DNS, P2P, …) 

•  Insight: key concepts 
–  Protocols 
–  Layering 
–  Naming 



Today 

•  Cut across protocols, identify principles 
•  Internet Architecture 

–  Virtues and challenges going forward! 



Networking Principles 

•  We saw many layers and protocols, but some 
principles are common to many 

•  Some are general CS concepts 
–  Hierarchy 
–  Indirection 
–  Caching 
–  Randomization 

•  Some are somewhat networking-speci!c 
–  Layering 
–  Multiplexing 
–  End-to-end argument 
–  So-state 



Layering 

•  Strong form of encapsulation, abstraction 
•  Each layer has three interfaces: 

–  Services provided to upper layer 
–  Protocol to communicate with peer at the same layer 
–  Using the services of the lower layer 

•  Provided interface hides all details of internal 
interface and lower layers 

•  Can be highly recursive 
–  E.g., IP over DNS, File system over Gmail! 



Layering on the Internet 
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Layering: IP as a Narrow Waist 

•  Many applications protocols on top of UDP & TCP 
•  IP works over many types of networks 
•  is is the “Hourglass” architecture of the Internet.  

–  If every network supports IP, applications run over many 
different networks (e.g., cellular network) 

…
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Layering: Data Encapsulation 

•  One layer’s data is the (opaque) payload of the next 
Stream (Application) 
  Segments (TCP) 
    Packets (IP) 
      Frames (Ethernet) 
        Encoding: bits -> chips 
          Modulation: chips -> signal variations 
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  Frame	
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Protocols 

•  Speci!cations for communication 
–  Data formats 
–  Behaviors (FSMs) 

•  Allow 
–  Interoperability 
–  Independent implementations 
–  Don’t need to specify everything 

•  E.g., TCP Congestion Control 

•  Postel’s Robustness Principle 
–  "Be liberal in what you accept, and conservative in 

what you send” (RFC 1122) 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|          Source Port          |       Destination Port        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        Sequence Number                        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Acknowledgment Number                      |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|  Data |           |U|A|P|R|S|F|                               |   
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |   
|       |           |G|K|H|T|N|N|                               |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Checksum            |         Urgent Pointer        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Options                    |    Padding    |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                             data                              |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
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Multiplexing 

•  Multiple streams/#ows can share at different 
levels 
–  Important to be able to de-multiplex: need naming  

•  Sharing 
–  Cost: infrastructure sharing 
–  Access: single channel sharing 
–  Reuse: Implementation sharing 

 



Multiplexing: Cost 

Multiple #ows/streams can share 
a link/path 
–  Packet switching 
–  Circuit switching 

•  Issues 
–  Coordinate access 

•  In time, in space, in frequency 
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Multiplexing: Access 

•  Sharing a single channel 
•  E.g., 

–  NAT: multiple nodes share a single IP address 
•  De-multiplexing: NAT uses 5-tuple to disambiguate 

–  SSH port forwarding 
•  Only port 22 is open, can tunnel other ports 
•  ssh other.host.com –L 5900:other.host.com:5900 

–  VPN 



Multiplexing: Reuse 

•  No need to re-implement functionality 
–  Several streams/$ows can use the services of a protocol 

•  E.g.: 
–  IP/ARP/AppleTalk on Ethernet: demux EtherType 
–  TCP/UDP/DCCP/… on IP: demux Protocol ID 
–  HTTP/SIP/SMTP/… on TCP/UDP: demux on Port 
–  Multiple hosts on one HTTP server: demux on Host: %eld 



End-to-End Argument 

“e end knows best” 
 

“e function in question can completely and correctly be 
implemented only with the knowledge and help of the 
application standing at the end points of the 
communication system. erefore, providing that 
questioned function as a feature of the communication 
system itself is not possible. (Sometimes an incomplete 
version of the function provided by the communication 
system may be useful as a performance enhancement.)” 

End-­‐to-­‐end	
  arguments	
  in	
  system	
  design.	
  Saltzer,	
  Reed,	
  and	
  Clark.	
  Technology	
  (100),	
  1984	
  



End-to-end argument 

•  Reliability:  
–  File transfer application: even through TCP, has to 

check for %le correctness (e.g., BitTorrent hashes) 
–  So reliability by the transport layer is redundant 
–  Would work even on top of UDP 

•  Multihop wireless: 
–  10 hops, 10% chance of packet loss per hop: 
–  Chance of success: 0.910 ~ 35% 
–  If you do up to 3 retransmissions per hop, loss drops 

to 0.13 = 0.001 per hop => chance of success 0.99910 ~ 
99% ! 
•  But can’t make it 0 => still require end-to-end check! 



End-to-end argument: examples 

•  Encryption: need assurance of no tampering, 
can only prove if the end point encrypted the 
message 
–  Doesn’t matter if the network automatically encrypts 

•  Duplicate suppression 
–  “Don’t click submit twice”: even though TCP is 

underneath, two requests will be different data for the 
network, application must enforce at-most-once 

•  Automatic recovery 
–  Airline reservation: rather than guaranteeing that 

every request can survive system crashes, rely on 
operators to retry. 



End-to-end argument 

•  Instinctively we like modularity and clean interfaces 
–  Which means putting functionality in low-level abstractions 

•  Examples: reliability, in-order delivery, security 
•  But some applications won’t be able to rely on this 

–  Low level functionality might be redundant 
–  Or might be insufficient 
–  Or might be useless for some applications 
–  Or might be harmful – e.g., real-time audio over a reliable, in-

order delivery channel 
•  Use as a guiding principle or where to place 

functionality 



Hierarchy 

•  Scalability of large systems 
–  Cannot store all information everywhere 
–  Cannot centrally control every component 

•  Hierarchy as a way to manage scale 
–  Divide large system in smaller pieces 
–  Summarize information about each piece 

•  Hierarchy as a way to divide control  
–  Decentralized management of pieces 

•  Many examples of hierarchy in the Internet 



Hierarchy Examples: IP Routing 

•  IP Addressing 
–  Hierarchical assignment of address blocks 
–  IANA -> Regional Internet Registries -> ISPs 
–  Decentralized control 

•  Topology 
–  (Roughly) correlated with addressing 
–  Allows aggregation (CIDR) 

•  Brown owns 128.148.0.0/16 

–  Decreases size of routing tables! 



Hierarchy Examples: IP Routing 

•  AS-level Topology 
–  Separates intra and inter-domain routing 
–  ASs have own economic interests 
–  Delegation of control 

•  Policy in inter-domain routing 
•  Complete control of intra-domain routing 

•  Hierarchical Topology 
–  Transit, Multi-homed, Stub ASs B 
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Hierarchy Examples: DNS 

•  Hierarchical name database 
•  Allows delegation of control 

–  Each organization controls a sub-tree 
–  May delegate control 

•  Allows scaling of the infrastructure 
–  A DNS server only needs to know about its sub-

domains 



Hierarchy Example: MAC Addresses 

•  Ethernet MAC addresses are globally unique 
identi!ers 
–  First 3 bytes: manufacturer, allocated by consortium 
–  Last 3 bytes: allocated by manufacturer 



Indirection 
•  Referencing by name 
•  “Any problem in computer science can be solved with 

another level of indirection... Except for the problem of 
too many layers of indirection” David Wheeler 

•  Goes hand in hand with the layering abstractions 
•  Bene!ts 
–  Human convenience 
–  Makes underlying changes transparent 

•  Examples 
–  Host names versus IP addresses 



Names versus addresses 

•  Names are easier to remember 
•  Addresses can change underneath 
•  Name could map to multiple IP addresses 

–  E.g. load balancing, or geographically closer server 
•  Multiple names for the same address 
•  Need a way to map one to the other 

–  DNS hierarchy 



Many Translations 

•  DHCP: Given a MAC Address, assign an IP address 
–  Uses IP broadcast to %nd server 

•  ARP: Given an IP address, !nd Ethernet MAC 
Addresses 
–  Uses Link Layer broadcast to %nd node 

•  DNS: Given a Name, !nd an IP address 
–  Uses IP unicast/anycast to well known roots, to bootstrap 
–  Relies on IP routing infrastructure, DNS hierarchy 

•  DHT: Given a key, !nd a node 
–  Uses IP unicast plus efficient $at namespace routing 



Caching 

•  Duplicate data stored elsewhere 
–  Reduce latency for accessing the data 
–  Reduce the load on other parts of the system 

•  Oen quite effective 
–  Locality of reference: temporal locality and small set of 

popular items 
•  Examples: 

–  Web caching 
–  DNS caching 
–  ARP caching 
–  Learning bridges 



DNS Caching 

•  What is cached? 
–  Mapping of names to IP addresses 
–  Lookups that failed 
–  IP addresses of name servers 

•  Reduces latency 
•  Reduces load on hierarchy 
•  Why is it effective? 

–  Mostly read database 
–  Doesn’t change very oen 
–  Popular sites are visited oen 



HTTP Caching 

•  What is cached? 
–  Web objects 

•  Where is it cached? 
–  Browser, proxy-cache, main memory on server 

•  Reduces latency, load 
•  What contributes to high hit rates? 

–  Cacheable content (mostly static) 
–  Sharing the cache among multiple users 
–  Small amount of popular content 



Randomization 

•  Distributed adaptive algorithms 
•  Risk of synchronization 

–  Many parties respond to the same conditions in the 
same way 

–  May lead to bad aggregate behavior 
•  Randomization can de-synchronize 

–  Example: Ethernet backoff mechanism 
–  Example: Random Early Drop 

Interes@ng	
  (extra)	
  read:	
  “The	
  Synchroniza@on	
  of	
  Periodic	
  Rou@ng	
  Messages”,	
  	
  
Sally	
  Floyd	
  and	
  Van	
  Jacobson,	
  Sigcomm	
  1993	
  



So State 
•  State is stored in nodes by network protocols 

–  E.g., a mapping, routing entry, cached object 
•  Key issue: how to deal with changes? 
•  Hard state: “valid unless told otherwise” 

–  “Managed” by originator of state 
–  Kept consistent, explicit invalidation 

•  So state: “valid if fresh” 
–  Removed by storing node on timeout 
–  Periodically refreshed as needed 

•  May need extra cost (on-demand revalidation or check) 
–  Can be seen as a hint 

•  So state reduces complexity 
–  At the cost of some unpredictability 



So state examples 

•  DNS Caching 
–  TTL 
–  Can be wrong, check with origin on error 

•  Alternative 
–  Origin keeps track of copies 
–  Refresh copies on change in mapping 

•  Cache coherence is hard 
–  And expensive at scale! 

•  Others 
–  DHCP lease 



Internet Architecture 

•  A Radical Idea 
–  Dumb network 
–  Lowest common denominator (best-effort service) 
–  No reservations: statistical multiplexing, packets 

•  Amazingly successful 
–  Architecture has scaled in size… 
–  Many orders of magnitude difference in bandwidth, 

latency, jitter, reliability, … 



Growth of the Internet 

Source:	
  Miguel	
  Angel	
  Todaro	
  



Original Design Principles of the Internet 

•  David Clark, 1988 “e Design Philosophy of the 
DARPA Internet Protocols” 

•  Fundamental Goal:  
–  Effective technique for multiplexed utilization of existing 

interconnected networks 
•  Secondary Goals: 

–  Communication should continue despite loss of nodes 
–  Multiple types of service 
–  Variety of networks 
–  Distributed management of resources 
–  Cost effective 
–  Low-effort host attachment 
–  Resources must be accountable 



But… ere are BIG Challenges 

•  Designed in a different environment, with 
different uses 
–  Identity / Accountability 
–  Access model 
–  Security 
–  Challenges to openness 



Identity 

•  Leads to 
–  Spoo%ng 
–  Spam 
–  Denial of service 

•  Ampli%cation 
attacks 

–  Route hijacking 
–  DNS cache 

poisoning 



Protocols designed based on trust 

•  at you don’t spoof your address 
–  MAC spoo%ng, IP spoo%ng, email spoo%ng 

•  at you are who you say you are 
–  BGP announcements, Websites, DNS servers 

•  at you adhere to the protocol 
–  Ethernet exponential backoff aer a collision 
–  TCP-friendliness 

•  at protocol speci!cations are public 
–  So that others can build interoperable implementations 



Nobody in charge 

•  Traffic traverses many Ass 
–  Who’s at fault when things go wrong? 
–  How do you upgrade functionality? 

•  Anyone can add any application 
–  Whether it is legal, moral, good, well-behaved, etc. 

•  Nobody knows how big the Internet is 
•  Spans many countries 

–  So no government can be in charge 



Access Models 

•  “On by default” 
–  Any node can talk to any node (IP, email, web) 
–  Allows for Denial of Service Attacks! 
–  Can use a %rewall… 

•  But won’t stop attackers from saturating the paths to you! 



Host versus Data centric 

•  IP is host-to-host protocol 
telnet myhost.mycompany.com 

•  Today 
–  Users want content, not servers 
–  Web: many redirections, lots of URLs are not “human readable” 

 http://a7.sphotos.ak.cdn.net/hphotos-ak-
ash1/167898_788691982781_7555_40937029_2012165_n.jpg 

–  “Lookup” through search engines 
–  BitTorrent: torrent %le describes content, speci%c peers are 

irrelevant 
•  Can the architecture support this better? 



Security 

•  Last class 
•  Huge challenges 

–  Public Key Infrastructure 
–  S-BGP, DNSSEC, IPSec 

•  Spoo!ng, Poisoning, Phishing 
•  Denial of Service attacks 
•  Cyber-security 

–  Cyber-war (talk to John Savage) 



Challenges to Openness 

•  Walled Gardens 
–  E.g., Facebook, Google 
–  Convenient, easy to use, network effects 
–  Intrusive data collection 
–  No control of own data, hard to migrate 
–  Centralization of trust 
–  Proprietary protocols 

•  Network Neutrality 
–  Should all packets be treated equally? 
–  ISPs are commoditized, want to make money 
–  Can prioritize own traffic, charge to carry other traffic 
–  Very hot debate topic 



Other Challenges 

•  Extreme mobility 
–  Mobile with no %xed attachment point 
–  How to maintain efficient routing? 

•  Large number of nodes 
–  Billions of small networked devices (e.g., sensors) 
–  “Internet of ings” 

•  Sometimes-connected nodes 
–  Developing regions with intermittent connectivity 

•  Real-time applications 
–  VoIP, gaming, IPTV 



Future of the Internet 

•  Can we !x these problems 
–  Security 
–  Performance 
–  Upgradability 
–  Manageability 
–  … your favorite ailment here … 

•  Without disrupting a critical infrastructure? 

•  Open technical and policy question… 



ank you! 


