CSCI-1680
Transport Layer 1

Chen Avin

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

and “Computer Networking: A Top Down Approach” - 6th edition

Today

 Transport Layer
— UDP

— TCP Intro
* Connection Establishment

Transport Layer

ANy Ay Ay Wl
HTTP TFTP

&4 L/
N

|P

NET, NET, ~~~ NET,

« Transport protocols sit on top of network layer

 Problem solved: communication among
Processes
— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

Transport services and protocols
B

data link

« provide logical communication
between app processes running
on different hosts

 transport protocols run in end
systems

« send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

* more than one transport protocol
available to apps

* |Internet; TCP and UDP

Transport vs. network layer

* network layer: logical
communication
between hosts

* transport layer: logical
communication
between processes

* relies on, enhances,
network layer services

Internet transport-layer protocols

reliable, in-order
delivery (TCP)

— congestion control
— flow control

— connection setup

unreliable, unordered
delivery: UDP

— no-frills extension of
“best-effort” IP

services not
available:

— delay guarantees
— bandwidth guarantees

application
d o]0,
netwo wORes o
data lin
<=/ A physical
7 network
netwo data link
data link @, ysical é
physical O
Q, L =
phySg
<> N network %
o data link A
%g phy5|cal‘ >,
|network Y@
data link
—emaley/sica|
network
data link
j hysical
5‘& P yﬁa network
ata lin
— - data link
N/ L physical
gl = ‘é-

r &
‘ /
/) '-r,”

a ation

networ
data link
physical

Multiplexing/demultiplexing

- multiplexing at sender:

handle data from multiple — demultiplexing at receiver: —

sockets, add transport header use header info to deliver

(later used for demultiplexing) received segments to correct
socket

application application [] socket
Q process

transport transpplrt

network network

link link \

physical physicg

How demultiplexing works

* host receives IP datagrams

« each datagram has source IP
address, destination IP address

« each datagram carries one
transport-layer segment

« each segment has source,
destination port number
 host uses IP addresses &
port numbers to direct
segment to appropriate

socket

32 bits >

A

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Connectionless demultiplexing

ssrecall: created socket recall: when creating
has host-local port #: datagram to send into UDP

DatagramSocket mySocketl socket, !ﬂnu.St speufy
= new DatagramSocket (12534) ; destination IP address
destination port #

“*when host receives IP datagrams with same

UDP segment: dest. port #, but different
= checks destination port # mmp source IP addresses
in segment and/or source port

. numbers will be directed
directs UDP segment to to same socket at dest

socket with that port #

Connectionless demux: example

DatagramSocket serverSocket

= new DatagramSocket

(6428) ;
DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket DatagramSocket
(9157) ;

application (5775) ;

application

application

ul 4 lu
transpor
network
link
physicg| \
source port: 6428 source port: ?
. dest port: 9157] dest port: ?
> < 57
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-10

Connection-oriented demux

* TCP socket - server host may
Identified by 4- support many
tuple: simultaneous TCP
» source IP address sockets:
» source port number each socket identified by

its own 4-tuple

« web servers have
different sockets for

* dest IP address
 dest port number

* demux: receiver each connecting client
uses all four values - non-persistent HTTP will
to direct segment to have different socket for

appropriate socket each request

Sockets Client Vs. Server

* A server waits for requests at a well-known

port that has been reserved for the service it
offers.

« A client allocates an arbitrary, unused, non
reserved port for its communication.

e Server Side:
— Open well-known port (Welcome Socket)
— Wait for next client request
— Create a new socket for the client
— Create thread/process to handle request

Connection-oriented demux: example

application

application

al 4 |

.I_I.

tragspart

transptfrt

york

networlk

link
ﬁ‘{ physicg|
host: IP source IP,port: B,80
address A dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80 _

server: |P
address B

= three segments, all destined to IP address: B,

9D dest port: 80 are demultiplexed to different sockets

application

P> P

o

network

link

ppysical

source IP,port: C,5775
dest IP,port: B,80

source IPport: C,9157
dest IP,port: B,80

e

A

host: IP
address C

Connection-oriented demux: example

application

al 4 |

transptfrt

threaded server

application

application

-l@
ransport

networlk

network

link

link

physica

J
:
1
: —)I kerver: IP ppysical

address B

host: IP source IP,port: B,80 e
address A dest IP,port: A,9157 source 1P port: C,5775
- dest IP,port: B,80

source IP,port: A,9157

dest IP, port: B,80

dest IP,port: B,80

source IPport: C,9157

host: IP
address C

Some well known ports

13/TCP,UDP DAYTIME - (REC 867)

20/TCP FTP — data

21/TCP ETP—control (command)

22/TCP,UDP Secure Shell (SSH)—used for secure logins, file transfers (scp, sftp) and port forwarding

23/TCP Telnet protocol—unencrypted text communications

25/TCP,UDP Simple Mail Transfer Protocol (SMTP)—used for e-mail routing between mail servers

53/TCP,UDP Domain Name System (DNS)

80/TCP,UDP Hypertext Transfer Protocol (HTTP)

143/TCP,UDP Internet Message Access Protocol (IMAP)—used for retrieving, organizing, and synchronizing
e-mail messages

179/TCP BGP (Border Gateway Protocol)

520/UDP Routing—RIP

546/TCP,UDP DHCPV6 client

547/TCP,UDP

DHCPvV6 server

http://en.wikipedia.org/wiki/DAYTIME
http://tools.ietf.org/html/rfc867
http://tools.ietf.org/html/rfc867
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/Telnet
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Routing_Information_Protocol

UDP: User Datagram Protocol [RFC 768]

* “no frills,” “bare bones” - UDP use:
Internetltransport * streaming multimedia
Erotoco Y _ apps (loss tolerant, rate

« “best effort” service, sensitive)

UDP segments may be:

B « DNS
lost

— delivered out-of-order * SNMP
to app . reliable transfer over

e connectionless: UDP:

— no handshaking s
between UDP sender, * add reliability at
receiver application layer

— each UDP segment * application-specific error
handled independently recovery!

of others

UDP Header

16 31

SrcPort

DstPort

Length

Checksum

UDP Checksum

* Uses the same algorithm as the IP
checksum

— Set Checksum field to O

— Sum all 16-bit words, adding any carry bits to the
LSB

— Flip bits to get checksum (except Oxffff->0xffff)

— To check: sum whole packet, including sum,
should get Oxffff

« How many errors?
— Catches any 1-bit error
— Not all 2-bit errors

« Optional in IPv4: not checked if value is O

Pseudo Header

0 7 8 15 16 23 24 31
4o e +-—— - $-—m———- +
| source address |
$-—— - +-—— - +-—— - e +
| destination address |
$-—— - +-—— - e 4 +
| zero |protocol] UDP length |
$-—— - +-—— - e 4 +

« UDP Checksum is computer over pseudo-
header prepended to the UDP header

— For IPv4: IP Source, IP Dest, Protocol (=17), plus
UDP length

 What does this give us?

« What is a problem with this?
— Is UDP a layer on top of IP?

Next Problem: Reliability

* Review: reliability on the link layer

e echaniam

Dropped Packets Acknowledgments + Timeout
Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Keeping the pipe full Sliding Window (Pipelining)

« Single link: things were easy... ©

Transport Layer Reliability

« Extra difficulties
— Multiple hosts
— Multiple hops
— Multiple potential paths
 Need for connection establishment, tear
down
— Analogy: dialing a number versus a direct line
* Varying RTTs
— Both across connections and during a
connection

— Why do they vary? What do they influence?

Extra Difficulties (cont.)

« Out of order packets
— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not
get confused

« Unknown resources at other end

— Must be able to discover receiver buffer: flow
control

 Unknown resources in the network
— Should not overload the network
— But should use as much as safely possible
— Congestion Control (next class)

TCP — Transmission Control Protocol

Application process Application process

- (.
[1 Write [] Read
: bytes . bytes

yL L]

TCP TCP
| Send buffer | | Receive buffer]|
A
| Segment | | Segment |---| Segment |

Transmit segments

« Service model: “reliable, connection oriented,
full duplex point-to-point byte stream”
— Endpoints: <IP Address, Port>

* Flow control
— If one end stops reading, writes at other eventually stop/falil

« Congestion control
— Keeps sender from overloading the network

TCP

Specification
— RFC 793 (1981), RFC 1222 (1989, some
corrections), RFC 5681 (2009, congestion control), ...

Was born coupled with IP, later factored out
— We talked about this, don’t always need everything!

End-to-end protocol
— Minimal assumptions on the network
— All mechanisms run on the end points

Alternative idea:
— Provide reliability, flow control, etc, link-by-link
— Does it work?

Why not provide (*) on the network
layer?

e Cost

— These functionalities are not free: don’t burden
those who don’t need them

* Conflicting

— Timeliness and in-order delivery, for example
* Insufficient

— Example: reliability

* may be security, reliability, ordering guarantees, ...

End-to-end argument

* Functions placed at lower levels of a system
may be redundant or of little value
— They may need to be performed at a higher layer

anyway

 But they may be justified for performance
reasons
— Or just because they provide most of what is needed
— Example: retransmissions

* Lesson: weigh the costs and benefits at each
layer
— Also: the end also varies from case to case

TCP segment structure

32 bits

Offsets Octet 0 1

counting by bytes
of data (not segments!)

2

A 4

3

Octet Bit 012345E'.I'E91D1112131415161‘4‘131920212223242526212%29#!031

0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
n|C|E|U|(A|P|R|S8|F))
12 96 Data offset Reserved ; w|c R |C s /5 Y I Window Size
R|E|G|E H|T|HN | H
16 128 Urgent pointer (if URG

20 160

ACK: ACK # valid

PSH: push data now
(generally not used)

/

\t data

RST, SYN, FIN:

Internet checksum connection estab
(as in UDP) (setup, teardown

data + header commands)

t> 5,pgdded at end with "0" bytes if necessary)

- urg
enerally not used) % e.g.,

set)

bytes
rcvr willing
to accept

ECN MSS,
Congestion ¥V|nd?rw scaling,
Window 'mestemp
Reduced

(CWR)

TCP sed. numbers, ACKs

outgoing segment from sender

. source port # dest port #
sequence numbers: g |
““ ” acknowledgement number
—pyte streqm numbe’r of] o~
first byte in segment’ s checksum | _urg pointer
data wmdow ﬂ

acknowledgements:

—seq # of next byte
expected from other side

sender sequence /7U/77[7€f space

—cumulative ACK sent sent not- usable not
] ACKed yet ACKed butnot usable
Q: how receiver handles 1gl“ir;1-) yet sent
ight”
out-of-order segments incoming segment to sender

source port # dest port #

—A: TCP spec doesn’ t say,
. sequence number
- Up to Imp|ement0r Jl acknowledgement number

A

rwnd

checksum

urg pointer

Establishing a Connection

Active participant Passive participant
(client) (server)
Syn .
Connect : SeQUenCeNUm Listen,
—_| Accept...
Accept
returns

Three-way handshake
— Two sides agree on respective initial sequence nums

« If no one s listening on port: server sends
RST

« If server is overloaded: ignore SYN
* If no SYN-ACK: retry, timeout

TCP 3-way handshake

client state

LISTEN
choose init seq num, x

send TCP SYN msg

SYNSENT
v received SYNACK(x)
ESTAB indicates server is live;

send ACK for SYNACK;

this segment may contain
client-to-server data

g

.

\

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

_—
T~

ACKbit=1, ACKnum=y+1

\

choose init seq num, y
send TCP SYNACK

msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN_ WAIT 1 can no longer
send but can
l receive data
FIN WAIT 2 wait for server
N - close
TIMED WAIT —~
timed wait
for 2*max
segment lifetime
CLOSED l

3

g
T Fibit=1
it=1, Seq=X\‘

/
ACKbit=1: ACKnum=x-+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

TIME_WAIT

 Why do you have to wait for 2MSL in TIME_WAIT?

— What if last ack is severely delayed, AND
— Same port pair is immediately reused for a new connection?

« Solution: active closer goes into TIME_WAIT
— Waits for 2ZMSL (Maximum Segment Lifetime)

 Can be problematic for active servers

— OS has too many sockets in TIME_WAIT, can accept less
connections

 Hack: send RST and delete socket, SO LINGER =0

— OS won't let you re-start server because port in use
« SO _REUSEADDR lets you rebind

Summary of TCP States

CLOSED .

. Lo

Unsynchronized ! Active open/SYN | g

Passive open Close | _F£

Synchronized v ﬁ

LISTEN R

=" L

L

.9

SYN/SYN + ACK Send/SYN s

SYN/SYN + ACK L Q

SYN_RCVD |3) SYN_SENT =

ACK SYN + ACK/ACK S

Close/FIN ESTABLISHED
. | FIN_WAIT_1 ; 5 CLOSE_WAIT | C till dl
Active close: ! . FIN/ACK | | . -an Still send:

. . | ACK Qf* ! | Close/FIN i
Can still receive v | ; v i
| | FIN_WAIT_2 CLOSING | | i LAST_ACK |
. ACK Timeout after two ACK .
— : FIN/ACK y sélgment I/feitlmes Y :
S :‘ ~ TIME_WAIT = CLOSED :

Next class

 Sending data over TCP

