
CSCI-1680

Transport Layer 1

Chen Avin

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

 and “Computer Networking: A Top Down Approach” - 6th edition

Today

• Transport Layer

– UDP

– TCP Intro

• Connection Establishment

Transport Layer

• Transport protocols sit on top of network layer

• Problem solved: communication among

processes

– Application-level multiplexing (“ports”)

– Error detection, reliability, etc.

Transport services and protocols

• provide logical communication
between app processes running
on different hosts

• transport protocols run in end
systems

• send side: breaks app
messages into segments,
passes to network layer

• rcv side: reassembles
segments into messages,
passes to app layer

• more than one transport protocol
available to apps

• Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport vs. network layer

• network layer: logical
communication
between hosts

• transport layer: logical
communication
between processes
• relies on, enhances,

network layer services

Internet transport-layer protocols

• reliable, in-order
delivery (TCP)
– congestion control

– flow control

– connection setup

• unreliable, unordered
delivery: UDP
– no-frills extension of
“best-effort” IP

• services not
available:
– delay guarantees

– bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver: handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

How demultiplexing works

• host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

• host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data
(payload)

other header fields

TCP/UDP segment format

Connectionless demultiplexing

recall: created socket

has host-local port #:
 DatagramSocket mySocket1

= new DatagramSocket(12534);

when host receives

UDP segment:

 checks destination port #

in segment

 directs UDP segment to

socket with that port #

recall: when creating
datagram to send into UDP
socket, must specify

destination IP address

destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

Transport Layer 3-10

Connectionless demux: example
DatagramSocket serverSocket
= new DatagramSocket

 (6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Connection-oriented demux

• TCP socket
identified by 4-
tuple:
• source IP address

• source port number

• dest IP address

• dest port number

• demux: receiver
uses all four values
to direct segment to
appropriate socket

• server host may
support many
simultaneous TCP
sockets:
• each socket identified by

its own 4-tuple

• web servers have
different sockets for
each connecting client
• non-persistent HTTP will

have different socket for
each request

12

Sockets Client Vs. Server

• A server waits for requests at a well-known
port that has been reserved for the service it
offers.

• A client allocates an arbitrary, unused, non
reserved port for its communication.

• Server Side:
– Open well-known port (Welcome Socket)

– Wait for next client request

– Create a new socket for the client

– Create thread/process to handle request

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server: IP
address B

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

15

Some well known ports
13/TCP,UDP DAYTIME – (RFC 867)

20/TCP FTP – data

21/TCP FTP—control (command)

22/TCP,UDP Secure Shell (SSH)—used for secure logins, file transfers (scp, sftp) and port forwarding

23/TCP Telnet protocol—unencrypted text communications

25/TCP,UDP Simple Mail Transfer Protocol (SMTP)—used for e-mail routing between mail servers

53/TCP,UDP Domain Name System (DNS)

80/TCP,UDP Hypertext Transfer Protocol (HTTP)

143/TCP,UDP Internet Message Access Protocol (IMAP)—used for retrieving, organizing, and synchronizing

e-mail messages

179/TCP BGP (Border Gateway Protocol)

520/UDP Routing—RIP

546/TCP,UDP DHCPv6 client

547/TCP,UDP DHCPv6 server

http://en.wikipedia.org/wiki/DAYTIME
http://tools.ietf.org/html/rfc867
http://tools.ietf.org/html/rfc867
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/Telnet
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Routing_Information_Protocol

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones”
Internet transport
protocol

• “best effort” service,
UDP segments may be:

– lost

– delivered out-of-order
to app

• connectionless:

– no handshaking
between UDP sender,
receiver

– each UDP segment
handled independently
of others

• UDP use:
• streaming multimedia

apps (loss tolerant, rate
sensitive)

• DNS

• SNMP

• reliable transfer over
UDP:
• add reliability at

application layer

• application-specific error
recovery!

UDP Header

UDP Checksum

• Uses the same algorithm as the IP
checksum
– Set Checksum field to 0

– Sum all 16-bit words, adding any carry bits to the
LSB

– Flip bits to get checksum (except 0xffff->0xffff)

– To check: sum whole packet, including sum,
should get 0xffff

• How many errors?
– Catches any 1-bit error

– Not all 2-bit errors

• Optional in IPv4: not checked if value is 0

Pseudo Header

• UDP Checksum is computer over pseudo-

header prepended to the UDP header

– For IPv4: IP Source, IP Dest, Protocol (=17), plus

UDP length

• What does this give us?

• What is a problem with this?

– Is UDP a layer on top of IP?

 0 7 8 15 16 23 24 31

+--------+--------+--------+--------+

| source address |

+--------+--------+--------+--------+

| destination address |

+--------+--------+--------+--------+

| zero |protocol| UDP length |

+--------+--------+--------+--------+

Next Problem: Reliability

• Review: reliability on the link layer

Problem Mechanism

Acknowledgments + Timeout

Dropped Packets

Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Keeping the pipe full Sliding Window (Pipelining)

• Single link: things were easy…

Transport Layer Reliability

• Extra difficulties

– Multiple hosts

– Multiple hops

– Multiple potential paths

• Need for connection establishment, tear

down

– Analogy: dialing a number versus a direct line

• Varying RTTs

– Both across connections and during a

connection

– Why do they vary? What do they influence?

Extra Difficulties (cont.)

• Out of order packets
– Not only because of drops/retransmissions

– Can get very old packets (up to 120s), must not
get confused

• Unknown resources at other end
– Must be able to discover receiver buffer: flow

control

• Unknown resources in the network
– Should not overload the network

– But should use as much as safely possible

– Congestion Control (next class)

TCP – Transmission Control Protocol

• Service model: “reliable, connection oriented,
full duplex point-to-point byte stream”
– Endpoints: <IP Address, Port>

• Flow control
– If one end stops reading, writes at other eventually stop/fail

• Congestion control
– Keeps sender from overloading the network

TCP

• Specification

– RFC 793 (1981), RFC 1222 (1989, some

corrections), RFC 5681 (2009, congestion control), …

• Was born coupled with IP, later factored out

– We talked about this, don’t always need everything!

• End-to-end protocol

– Minimal assumptions on the network

– All mechanisms run on the end points

• Alternative idea:

– Provide reliability, flow control, etc, link-by-link

– Does it work?

Why not provide (*) on the network

layer?

• Cost

– These functionalities are not free: don’t burden

those who don’t need them

• Conflicting

– Timeliness and in-order delivery, for example

• Insufficient

– Example: reliability

* may be security, reliability, ordering guarantees, …

End-to-end argument

• Functions placed at lower levels of a system

may be redundant or of little value

– They may need to be performed at a higher layer

anyway

• But they may be justified for performance

reasons

– Or just because they provide most of what is needed

– Example: retransmissions

• Lesson: weigh the costs and benefits at each

layer

– Also: the end also varies from case to case

27

TCP segment structure
32 bits

URG: urgent data
(generally not used)

ACK: ACK # valid

PSH: push data now
(generally not used)

Internet checksum
(as in UDP)

 data + header

bytes
rcvr willing
to accept

counting by bytes
of data (not segments!)

e.g.,
MSS,
Window scaling,
timestemp

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

ECN

Congestion
Window
Reduced
(CWR)

TCP seq. numbers, ACKs

sequence numbers:

–byte stream “number” of

first byte in segment’s

data

acknowledgements:

–seq # of next byte

expected from other side

–cumulative ACK

Q: how receiver handles

out-of-order segments

–A: TCP spec doesn’t say,

- up to implementor

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: server sends
RST

• If server is overloaded: ignore SYN

• If no SYN-ACK: retry, timeout

Listen,
Accept…

Accept
returns

Connect

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

 wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

TIME_WAIT

• Why do you have to wait for 2MSL in TIME_WAIT?

– What if last ack is severely delayed, AND

– Same port pair is immediately reused for a new connection?

• Solution: active closer goes into TIME_WAIT

– Waits for 2MSL (Maximum Segment Lifetime)

• Can be problematic for active servers

– OS has too many sockets in TIME_WAIT, can accept less

connections

• Hack: send RST and delete socket, SO_LINGER = 0

– OS won’t let you re-start server because port in use

• SO_REUSEADDR lets you rebind

Summary of TCP States

Passive close:
Can still send! Active close:

Can still receive

C
o

n
n

ec
ti

o
n

 E
st

ab
lis

h
m

en
t

Unsynchronized

Synchronized

Next class

• Sending data over TCP

