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Today 

• Transport Layer 

– UDP 

– TCP Intro 

• Connection Establishment 



Transport Layer 

• Transport protocols sit on top of network layer 

• Problem solved: communication among 

processes 

– Application-level multiplexing (“ports”) 

– Error detection, reliability, etc. 



Transport services and protocols 

• provide logical communication 
between app processes running 
on different hosts 

• transport protocols run in end 
systems  

• send side: breaks app 
messages into segments, 
passes to  network layer 

• rcv side: reassembles 
segments into messages, 
passes to app layer 

• more than one transport protocol 
available to apps 

• Internet: TCP and UDP 
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Transport vs. network layer 

• network layer: logical 
communication 
between hosts 

• transport layer: logical 
communication 
between processes  
• relies on, enhances, 

network layer services 



Internet transport-layer protocols 

• reliable, in-order 
delivery (TCP) 
– congestion control  

– flow control 

– connection setup 

• unreliable, unordered 
delivery: UDP 
– no-frills extension of 
“best-effort” IP 

• services not 
available:  
– delay guarantees 

– bandwidth guarantees 
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Multiplexing/demultiplexing 

process 

socket 

use header info to deliver 
received segments to correct  
socket 

demultiplexing at receiver: handle data from multiple 
sockets, add transport header 
(later used for demultiplexing) 

multiplexing at sender: 
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How demultiplexing works 

• host receives IP datagrams 
• each datagram has source IP 

address, destination IP address 

• each datagram carries one 
transport-layer segment 

• each segment has source, 
destination port number  

• host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket 

source port # dest port # 

32 bits 

application 
data  
(payload) 

other header fields 

TCP/UDP segment format 



Connectionless demultiplexing 

recall: created socket 

has host-local port #: 
  DatagramSocket mySocket1        

= new DatagramSocket(12534); 

 

when host receives 

UDP segment: 

 checks destination port # 

in segment 

 directs UDP segment to 

socket with that port # 

 

recall: when creating 
datagram to send into UDP 
socket, must specify 

destination IP address 

destination port # 

IP datagrams with same 
dest. port #, but different 
source IP addresses 
and/or source port 
numbers will be directed 
to same socket at dest 
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Connectionless demux: example 
DatagramSocket serverSocket 
= new DatagramSocket 

 (6428); 
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DatagramSocket 
mySocket1 = new 
DatagramSocket 
(5775); 

 

DatagramSocket 
mySocket2 = new 
DatagramSocket 

 (9157); 

 

source port: 9157 
dest port: 6428 

source port: 6428 
dest port: 9157 

source port: ? 
dest port: ? 

source port: ? 
dest port: ? 



Connection-oriented demux 

• TCP socket 
identified by 4-
tuple:  
• source IP address 

• source port number 

• dest IP address 

• dest port number 

• demux: receiver 
uses all four values 
to direct segment to 
appropriate socket 

• server host may 
support many 
simultaneous TCP 
sockets: 
• each socket identified by 

its own 4-tuple 

• web servers have 
different sockets for 
each connecting client 
• non-persistent HTTP will 

have different socket for 
each request 



12 

Sockets Client Vs. Server 

• A server waits for requests at a well-known 
port that has been reserved for the service it 
offers.  

• A client allocates an arbitrary, unused, non 
reserved port for its communication.  

• Server Side: 
– Open well-known port (Welcome Socket) 

– Wait for next client request   

– Create a new socket for the client  

– Create thread/process to handle request 



Connection-oriented demux: example 
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

network 
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source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

three segments, all destined to IP address: B, 
 dest port: 80 are demultiplexed to different sockets 

server: IP 
address B 



Connection-oriented demux: example 
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source IP,port: A,9157 
dest IP, port: B,80 

source IP,port: B,80 
dest IP,port: A,9157 

host: IP 
address A 

host: IP 
address C 

server: IP 
address B 

network 

P3 

source IP,port: C,5775 
dest IP,port: B,80 

source IP,port: C,9157 
dest IP,port: B,80 

P4 

threaded server 
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Some well known ports 
13/TCP,UDP DAYTIME – (RFC 867) 

20/TCP FTP – data 

21/TCP FTP—control (command) 

22/TCP,UDP Secure Shell (SSH)—used for secure logins, file transfers (scp, sftp) and port forwarding 

23/TCP Telnet protocol—unencrypted text communications 

25/TCP,UDP Simple Mail Transfer Protocol (SMTP)—used for e-mail routing between mail servers 

53/TCP,UDP Domain Name System (DNS) 

80/TCP,UDP Hypertext Transfer Protocol (HTTP) 

143/TCP,UDP Internet Message Access Protocol (IMAP)—used for retrieving, organizing, and synchronizing 

e-mail messages 

179/TCP BGP (Border Gateway Protocol) 

520/UDP Routing—RIP 

546/TCP,UDP DHCPv6 client 

547/TCP,UDP DHCPv6 server 

http://en.wikipedia.org/wiki/DAYTIME
http://tools.ietf.org/html/rfc867
http://tools.ietf.org/html/rfc867
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/File_transfer_protocol
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/File_transfer
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/Telnet
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Routing_Information_Protocol


UDP: User Datagram Protocol [RFC 768] 

• “no frills,” “bare bones” 
Internet transport 
protocol 

• “best effort” service, 
UDP segments may be: 

– lost 

– delivered out-of-order 
to app 

• connectionless: 

– no handshaking 
between UDP sender, 
receiver 

– each UDP segment 
handled independently 
of others 

• UDP use: 
• streaming multimedia 

apps (loss tolerant, rate 
sensitive) 

• DNS 

• SNMP 

• reliable transfer over 
UDP:  
• add reliability at 

application layer 

• application-specific error 
recovery! 



UDP Header 



UDP Checksum 

• Uses the same algorithm as the IP 
checksum 
– Set Checksum field to 0 

– Sum all 16-bit words, adding any carry bits to the 
LSB 

– Flip bits to get checksum (except 0xffff->0xffff) 

– To check: sum whole packet, including sum, 
should get 0xffff 

• How many errors? 
– Catches any 1-bit error 

– Not all 2-bit errors 

• Optional in IPv4: not checked if value is 0 



Pseudo Header 

• UDP Checksum is computer over pseudo-

header prepended to the UDP header 

– For IPv4: IP Source, IP Dest, Protocol (=17), plus 

UDP length 

• What does this give us? 

• What is a problem with this? 

– Is UDP a layer on top of IP? 

 

 0      7 8     15 16    23 24    31 

+--------+--------+--------+--------+ 

|          source address           | 

+--------+--------+--------+--------+ 

|        destination address        |  

+--------+--------+--------+--------+ 

|  zero  |protocol|   UDP length    |   

+--------+--------+--------+--------+ 

 



Next Problem: Reliability 

• Review: reliability on the link layer 

Problem Mechanism 

Acknowledgments + Timeout 
 

Dropped Packets 

Duplicate Packets Sequence Numbers 

Packets out of order Receiver Window 

Keeping the pipe full Sliding Window (Pipelining) 

• Single link: things were easy…  



Transport Layer Reliability 

• Extra difficulties 

– Multiple hosts 

– Multiple hops 

– Multiple potential paths 

• Need for connection establishment, tear 

down 

– Analogy: dialing a number versus a direct line 

• Varying RTTs 

– Both across connections and during a 

connection 

– Why do they vary? What do they influence? 



Extra Difficulties (cont.) 

• Out of order packets 
– Not only because of drops/retransmissions 

– Can get very old packets (up to 120s), must not 
get confused 

• Unknown resources at other end 
– Must be able to discover receiver buffer: flow 

control 

• Unknown resources in the network 
– Should not overload the network 

– But should use as much as safely possible 

– Congestion Control (next class) 



TCP – Transmission Control Protocol 

• Service model: “reliable, connection oriented, 
full duplex point-to-point byte stream” 
– Endpoints: <IP Address, Port> 

• Flow control 
– If one end stops reading, writes at other eventually stop/fail 

• Congestion control 
– Keeps sender from overloading the network 



TCP 

• Specification 

– RFC 793 (1981), RFC 1222 (1989, some 

corrections), RFC 5681 (2009, congestion control), … 

• Was born coupled with IP, later factored out 

– We talked about this, don’t always need everything! 

• End-to-end protocol 

– Minimal assumptions on the network 

– All mechanisms run on the end points 

• Alternative idea: 

– Provide reliability, flow control, etc, link-by-link 

– Does it work? 

 



Why not provide (*) on the network 

layer? 

• Cost 

– These functionalities are not free: don’t burden 

those who don’t need them 

• Conflicting 

– Timeliness and in-order delivery, for example 

• Insufficient 

– Example: reliability 

* may be security, reliability, ordering guarantees, … 



End-to-end argument 

• Functions placed at lower levels of a system 

may be redundant or of little value 

– They may need to be performed at a higher layer 

anyway 

• But they may be justified for performance 

reasons 

– Or just because they provide most of what is needed 

– Example: retransmissions 

• Lesson: weigh the costs and benefits at each 

layer 

– Also: the end also varies from case to case 
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TCP segment structure 
32 bits 

URG: urgent data  
(generally not used) 

ACK: ACK # valid 

PSH: push data now 
(generally not used) 

Internet checksum 
(as in UDP) 

 data + header 

# bytes  
rcvr willing 
to accept 

counting by bytes  
of data (not segments!) 

e.g., 
MSS,  
Window scaling, 
timestemp 

RST, SYN, FIN: 
connection estab 
(setup, teardown 

commands) 

ECN 

Congestion 
Window 
Reduced 
(CWR) 



TCP seq. numbers, ACKs 

sequence numbers: 

–byte stream “number” of 

first byte in segment’s 

data 

acknowledgements: 

–seq # of next byte 

expected from other side 

–cumulative ACK 

Q: how receiver handles 

out-of-order segments 

–A: TCP spec doesn’t say, 

- up to implementor 

source port # dest port # 

sequence number 

acknowledgement number 

checksum 

rwnd 

urg pointer 

incoming segment to sender 

A 

sent  
ACKed 

sent, not-
yet ACKed 
(“in-
flight”) 

usable 
but not  
yet sent 

not  
usable 

window size 
 N 

sender sequence number space  

source port # dest port # 

sequence number 

acknowledgement number 

checksum 

rwnd 

urg pointer 

outgoing segment from sender 



Establishing a Connection 

• Three-way handshake 
– Two sides agree on respective initial sequence nums 

• If no one is listening on port: server sends 
RST 

• If server is overloaded: ignore SYN 

• If no SYN-ACK: retry, timeout 

Listen, 
Accept… 

Accept 
returns 

Connect 



TCP 3-way handshake 

SYNbit=1, Seq=x 

choose init seq num, x 
send TCP SYN msg 

ESTAB 

SYNbit=1, Seq=y 
ACKbit=1; ACKnum=x+1 

choose init seq num, y 
send TCP SYNACK 
msg, acking SYN 

ACKbit=1, ACKnum=y+1 

received SYNACK(x)  
indicates server is live; 
send ACK for SYNACK; 

this segment may contain  
client-to-server data 

received ACK(y)  
indicates client is live 

SYNSENT 

ESTAB 

SYN RCVD 

client state 
 

LISTEN 

server state 
 

LISTEN 



FIN_WAIT_2 

CLOSE_WAIT 

FINbit=1, seq=y 

ACKbit=1; ACKnum=y+1 

ACKbit=1; ACKnum=x+1 

 wait for server 
close 

can still 
send data 

can no longer 
send data 

LAST_ACK 

CLOSED 

TIMED_WAIT 

 timed wait  
for 2*max  

segment lifetime 

CLOSED 

TCP: closing a connection 

FIN_WAIT_1 FINbit=1, seq=x can no longer 
send but can 
 receive data 

clientSocket.close() 

client state 
 

server state 
 

ESTAB ESTAB 



TIME_WAIT 

• Why do you have to wait for 2MSL in TIME_WAIT? 

– What if last ack is severely delayed, AND 

– Same port pair is immediately reused for a new connection? 

• Solution: active closer goes into TIME_WAIT 

– Waits for 2MSL (Maximum Segment Lifetime) 

• Can be problematic for active servers 

– OS has too many sockets in TIME_WAIT, can accept less 

connections 

• Hack: send RST and delete socket, SO_LINGER = 0 

– OS won’t let you re-start server because port in use 

• SO_REUSEADDR lets you rebind 



Summary of TCP States 

Passive close: 
Can still send! Active close: 

Can still receive 
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Next class 

• Sending data over TCP 


