
CSCI-1680

Transport Layer 2

Data over TCP

Chen Avin

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

 and “Computer Networking: A Top Down Approach” - 6th edition

Last Class

• Introduction to TCP

– Header format

– Connection state diagram

• Today: sending data

TCP reliable data transfer

• TCP creates rdt
service on top of
IP’s unreliable
service
– pipelined segments

– cumulative acks

– single retransmission
timer

• retransmissions
triggered by:
– timeout events

– duplicate acks

let’s initially consider

simplified TCP

sender:

– ignore duplicate acks

– ignore flow control,

congestion control

TCP sender events:

• data rcvd from app:

• create segment with

seq #

• seq # is byte-stream

number of first data

byte in segment

• start timer if not already

running

• think of timer as for oldest

unacked segment

• expiration interval:
TimeOutInterval

timeout:

• retransmit segment

that caused timeout

• restart timer

 ack rcvd:

• if ack acknowledges

previously unacked

segments

– update what is known to

be ACKed

– start timer if there are

still unacked segments

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

TCP fast retransmit

• time-out period often

relatively long:

• long delay before

resending lost packet

• detect lost segments

via duplicate ACKs.

• sender often sends many

segments back-to-back

• if segment is lost, there

will likely be many

duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

TCP round trip time, timeout

Q: how to set TCP

timeout value?

• longer than RTT
• but RTT varies

• too short:
premature timeout,
unnecessary
retransmissions

• too long: slow
reaction to segment
loss

Q: how to estimate
RTT?

• SampleRTT: measured
time from segment
transmission until ACK
receipt

– ignore retransmissions

• SampleRTT will vary, want
estimated RTT
“smoother”

– average several recent
measurements, not just
current SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

Originally

• EstRTT = (1 – α) × EstRTT + α × SampleRTT

• Timeout = 2 × EstRTT

• Problem 1:

– in case of retransmission, ack corresponds to which send?

– Solution: only sample for segments with no retransmission

• Problem 2:

– does not take variance into account: too aggressive when

there is more load!

• timeout interval: EstimatedRTT plus “safety
margin”
– large variation in EstimatedRTT -> larger safety margin

• estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process
• receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
– RcvBuffer size set via

socket options (typical
default is 4096 bytes)

– many operating systems
autoadjust RcvBuffer

• sender limits amount of
unacked (“in-flight”) data
to receiver’s rwnd value

• guarantees receive buffer
will not overflow

receiver-side buffering

TCP flow control – A problem

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process

receiver-side buffering

• Advertised window can

fall to 0

– How?

– Sender eventually stops

sending, blocks application

• Sender keeps sending

1-byte segments until

window comes back > 0

When to Transmit?

• Nagle’s algorithm

• Goal: reduce the overhead of small packets
If available data and window >= MSS

 Send a MSS segment

else

 If there is unAcked data in flight

 buffer the new data until ACK

arrives

 else

 send all the new data now

• Receiver should avoid advertising a window
<= MSS after advertising a window of 0

Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends

data

– If more data received, immediately ACK second
segment

– Note: never delay duplicate ACKs (if missing a
segment)

• Warning: can interact very badly with
Nagle
– Temporary deadlock

– Can disable Nagle with TCP_NODELAY

– Application can also avoid many small writes

Limitations of Flow Control

• Network may be the bottleneck

• Signal from receiver not enough!

• Sending too fast will cause queue

overflows, heavy packet loss

• Flow control provides correctness

• Need more for performance: congestion

control

Second goal

• We should not send more data than the

network can take: congestion control

congestion:

• informally: “too many sources sending

too much data too fast for network to

handle”

• different from flow control!

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queueing in router buffers)

• a top-10 problem!

Principles of congestion control

Causes/costs of congestion: scenario 1

• two senders, two
receivers

• one router, infinite
buffers

• output link capacity: R

• no retransmission

 maximum per-connection
throughput: R/2

unlimited shared

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o

u
t

lin R/2
d

e
la

y

lin

 large delays as arrival rate, lin,
approaches capacity

• one router, finite buffers

• sender retransmission of timed-out packet

• application-layer input = application-layer output: lin = lout

• transport-layer input includes retransmissions : lin lin

finite shared output

link buffers

Host A

lin : original data

Host B

lout l'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2

Transport Layer 3-26

idealization: perfect
knowledge

• sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
lout l'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o

u
t

lin

Causes/costs of congestion: scenario 2

Host B

A

lin : original data
lout l'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known
loss packets can be
lost, dropped at router
due to full buffers

• sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

lin : original data
lout l'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

R/2

R/2 lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Idealization: known
loss packets can be
lost, dropped at router
due to full buffers

• sender only resends if
packet known to be lost

A

lin
lout l'in

copy

free buffer space!

timeout

R/2

R/2 lin

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

R/2

l
o

u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”

 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2 lin

Causes/costs of congestion: scenario 2

Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

 four senders

multihop paths

 timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output

link buffers

Host A lout

Causes/costs of congestion: scenario

3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

another “cost” of congestion:

 when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o

u
t

lin
’

33

Approaches towards congestion

control

End-end congestion

control:

• no explicit feedback from

network

• congestion inferred from

end-system observed loss,

delay

• approach taken by TCP

Network-assisted

congestion control:

• routers provide feedback to

end systems

• single bit indicating

congestion (SNA, DECbit,

TCP/IP ECN, ATM)

• explicit rate sender should

send at

Two broad approaches towards congestion control:

34

Why Packet Switching and Not VC ?

• We use packet switching because it makes efficient use

of the links. Therefore, buffers in the routers are

frequently occupied.

• If buffers are always empty, delay is low, but our usage

of the network is low.

• If buffers are always occupied, delay is high, but we

are using the network more efficiently.

• So how much congestion is too much?

35

• IP layer doesn’t provide explicit feedback

to end systems

• TCP implements host-based, feedback-

based, window-based congestion control.

• TCP sources attempt to determine how

much capacity is available

• TCP sends packets, then reacts to

observable events (loss).

Why Packet Switching and Not VC ?

36

TCP Congestion Control - main points

• TCP sources detect congestion and, distributively

reduce the rate at which they transmit.

• The rate is controlled using the TCP window size.

• TCP achieves high throughput by encouraging high

delay.

• TCP sources change the sending rate by modifying the

window size:

Window = min{Advertized window, Congestion Window}

• In other words, send at the rate of the slowest

component: network or receiver.

Receiver (“rwnd”) Transmitter (“cwnd”)

A Short History of TCP

• 1974: 3-way handshake

• 1978: IP and TCP split

• 1983: January 1st, ARPAnet switches to TCP/IP

• 1984: Nagle predicts congestion collapses

• 1986: Internet begins to suffer congestion
collapses
– LBL to Berkeley drops from 32Kbps to 40bps

• 1987/8: Van Jacobson fixes TCP, publishes seminal
 paper*: (TCP Tahoe)

• 1990: Fast transmit and fast recovery added

 (TCP Reno)

* Van Jacobson. Congestion avoidance and control. SIGCOMM ’88

Congestion Collapse
Nagle, rfc896, 1984

• Mid 1980’s. Problem with the protocol
implementations, not the protocol!

• What was happening?
– Load on the network buffers at routers fill up
 round trip time increases

• If close to capacity, and, e.g., a large flow
arrives suddenly…
– RTT estimates become too short

– Lots of retransmissions increase in queue size

– Eventually many drops happen (full queues)

– Fraction of useful packets (not copies)
decreases

TCP Congestion Control

• 3 Key Challenges

– Determining the available capacity in the first place

– Adjusting to changes in the available capacity

– Sharing capacity between flows

• Idea

– Each source determines network capacity for itself

– Rate is determined by window size

– Uses implicit feedback (drops, delay)

– ACKs pace transmission (self-clocking)

TCP congestion control: additive
increase multiplicative decrease

 approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

 additive increase: increase cwnd by 1 MSS every
RTT until loss detected

multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

 T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control: details

• sender limits transmission:

• cwnd is dynamic, function of
perceived network
congestion

TCP sending rate:

• roughly: send cwnd

bytes, wait RTT for

ACKS, then send

more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

TCP Slow Start

• when connection
begins, increase rate
exponentially until first
loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing
cwnd for every ACK
received

• summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

TCP: detecting, reacting to loss

• loss indicated by timeout:

• cwnd set to 1 MSS;

• window then grows exponentially (as in slow start) to

threshold, then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of delivering

some segments

• cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3

duplicate acks)

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets to
1/2 of its value
before timeout.

Implementation:
• variable ssthresh

• on loss event,
ssthresh is set to 1/2
of cwnd just before loss
event

TCP: switching from slow start to CA

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

3 Challenges Revisited

• Determining the available capacity in the
first place
– Exponential increase in congestion window

• Adjusting to changes in the available
capacity
– Slow probing, AIMD

• Sharing capacity between flows
– AIMD

• Detecting Congestion
– Timeout based on RTT

– Triple duplicate acknowledgments

• Fast retransmit/Fast recovery
– Reduces slow starts, timeouts

Next Class

• More Congestion Control fun

• Cheating on TCP

• TCP on extreme conditions

• TCP Friendliness

• TCP Future

