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Last Time 

• Flow Control 

• Congestion Control 



Today 

• More TCP Fun! 

• TCP Throughput 

• TCP fairness 

• TCP on Lossy Links 

• Congestion Control versus Avoidance 

– Getting help from the network 

• Cheating TCP 



TCP Throughput 

• Assume a TCP congestion of window W 
(segments), round-trip time of RTT, segment size 
MSS 
– Sending Rate S = W x MSS / RTT (1) 

• Drop: W = W/2 
– grows by MSS for W/2 RTTs, until another drop at W ≈ W 

• Average window then 0.75xS 
–  From (1), S = 0.75 W MSS / RTT (2) 

• Loss rate is 1 in number of packets between 
losses: 
– Loss = 1 / (W/2 + W/2+1 + W/2 + 2  + … + W) 

 = 1 / (3/8 W2) (3) 



TCP Throughput (cont) 

– Loss = 8/(3W2)                               (4) 

 

–  Substituting (4) in (2), S = 0.75 W MSS / RTT ,  

 

Throughput ≈    
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TCP Futures: TCP over “long, fat pipes” 

• example: 1500 byte segments, 100ms RTT, 
want 10 Gbps throughput 

• requires W = 83,333 in-flight segments 

• throughput in terms of segment loss 
probability, L [Mathis 1997]: 

 
 
 
➜ to achieve 10 Gbps throughput, need a loss rate 

of L = 2·10-10   – a very small loss rate! 

• new versions of TCP for high-speed 

 

TCP throughput =  
1.22 . MSS 

RTT L 



fairness goal: if K TCP sessions share 

same bottleneck link of bandwidth R, 

each should have average rate of R/K 

TCP connection 1 

bottleneck 

router 

capacity R 

TCP Fairness 

TCP connection 2 



Why is TCP fair? 

two competing sessions: 

• additive increase gives slope of 1, as throughout 

increases 

• multiplicative decrease decreases throughput 

proportionally  
R 

R 

equal bandwidth share 

Connection 1 throughput 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 



Fairness (more) 

Fairness and UDP 

• multimedia apps 
often do not use 
TCP 
• do not want rate 

throttled by 
congestion control 

• instead use UDP: 
• send audio/video at 

constant rate, 
tolerate packet loss 

 

Fairness, parallel TCP 
connections 

• application can open 
multiple parallel 
connections between 
two hosts 

• web browsers do this  

• e.g., link of rate R with 
9 existing connections: 
• new app asks for 1 TCP, gets 

rate R/10 

• new app asks for 11 TCPs, gets 
R/2  

 

 



TCP Friendliness 

• Can other protocols co-exist with TCP? 

– E.g., if you want to write a video streaming app 

using UDP, how to do congestion control? 

• Equation-based Congestion Control 

– Instead of implementing TCP’s CC, estimate the 

rate at which TCP would send. Function of what? 

– RTT, MSS, Loss 

• Measure RTT, Loss, send at that rate! 
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Approaches towards congestion control 

End-end congestion 

control: 

• no explicit feedback from 

network 

• congestion inferred from 

end-system observed loss, 

delay 

• approach taken by TCP 

Network-assisted 

congestion control: 

•  routers provide feedback to 

end systems 

•  single bit indicating 

congestion (SNA, DECbit, 

TCP/IP ECN, ATM) 

•  explicit rate sender should 

send at 

Two broad approaches towards congestion control: 
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Congestion Avoidance 

• TCP creates congestion to then back off 
– Queues at bottleneck link are often full: increased 

delay 

– Sawtooth pattern: jitter 

• Network-assisted congestion control: 
– Predict when congestion is about to happen 

– Reduce rate before packets start being discarded 

– Call this congestion avoidance instead of congestion 
control 

• Two approaches 
– router-centric: e.g., DECbit and RED gateways 

– host-centric: e.g., TCP vegas  
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DECbit 

• Add binary congestion bit to each packet 

header 

• Router: 

– monitors average queue length over last busy_idle 

cycle 

 

 

 

 

 

 

– set congestion bit if average queue length > 1 

– attempts to balance throughput vs. delay 
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End Hosts 

• Destination echoes bit back to source 

• Source records how many packets results in 

set bit. 

• If less than 50% of last window’s worth had 

bit set 

– increase CongWin by 1 packet 

• If more than 50% of last window’s worth had 

bit set 

– decrease CongWin by 0.875 times 
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Random Early Detection (RED) 

• Notification is implicit 

– Just drop the packet (TCP will timeout or dup 

ACKs) 

– Could make explicit by marking the packet (ECN) 

• Early random drop 

– Rather than wait for queue to become full, drop 

each arriving packet with some drop probability 

whenever the queue length exceeds some drop 

level.  



RED Details 

• Compute average queue length (EWMA) 

– Don’t want to react to very quick fluctuations 
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RED details (cont) 

• Two queue length thresholds  

Keep packet Drop packet 

Calculate probability p and drop packet  

with probability p 



RED Drop Probability 

• Define two thresholds: MinThresh, MaxThresh 

• Drop probability: 

• Improvements to spread drops (see book) 



32 

TCP Vegas: Host based CA 

• Idea: Source watches for some sign that 

router’s queue is building up and 

congestion happen too, for example: 

– RTT grows 

– Sending rate flatten 

• “Fast TCP” 

– base RTT (on “empty” network, minimum measured) 

– observed RTT 

– Difference is used to estimate queues lengths  



What happens if not everyone 

cooperates? 

• TCP works extremely well when its 

assumptions are valid 

– All flows correctly implement congestion control 

– Losses are due to congestion 



Cheating TCP 

• Three possible ways to cheat 

– Increasing cwnd faster 

– Large initial cwnd 

– Opening many connections 

– Ack Division Attack 

 



Increasing cwnd Faster 

Limit rates: 

x = 2y 

C 

x 

y 

x increases by 2 per RTT 

y increases by 1 per RTT 

Figure from Walrand, Berkeley EECS 122, 2003 



Larger Initial Window  

A B 
x 

D E 
y 

x starts SS with cwnd = 4 

y starts SS with cwnd = 1 

Figure from Walrand, Berkeley EECS 122, 2003 



Open Many Connections 

• Assume: 

– A opens 10 connections to B 

– B opens 1 connection to E 

• TCP is fair among connections 

– A gets 10 times more bandwidth than B 

A B 
x 

D E 
y 

• Web Browser: has to download k objects for a 

page 

– Open many connections or download sequentially? 

Figure from Walrand, Berkeley EECS 122, 2003 



Exploiting Implicit Assumptions 

• Savage, et al., CCR 1999:  

– “TCP Congestion Control with a Misbehaving Receiver” 

• Exploits ambiguity in meaning of ACK 

– ACKs can specify any byte range for error control 

– Congestion control assumes ACKs cover entire sent 

segments 

• What if you send multiple ACKs per segment? 

http://www.cs.washington.edu/homes/tom/pubs/CCR99.pdf


ACK Division Attack 

2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment' s sequence number has been received and
can be retired from the sender' s retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that was expected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow start and congestion avoidance [Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwnd to reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreases cwnd quickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value of cwnd more
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender' s vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP increments cwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).

The incongruence between the byte granularity of error control
and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time, cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoretically be coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times! 1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms, fast retransmit and fast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Set cwnd to ssthresh plus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwnd by SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such

as sender buffering, receiver buffering and network bandwidth.

• Receiver: “upon receiving a 
segment with N bytes, divide the 
bytes in M groups and 
acknowledge each group 
separately” 

• Sender will grow window M 
times faster 

• Could cause growth to 4GB in 4 
RTTs! 
– M = N = 1460 



TCP Daytona! 



Defense 

• Appropriate Byte Counting  

– [RFC3465 (2003), RFC 5681 (2009)] 

– In slow start, cwnd += min (N, MSS) 

where N is the number of newly acknowledged 

bytes in the received ACK 



Next Time 

• Move into the application layer 

• DNS, Web, Security, and more… 


