
CSCI-1680

DHT

Based partly on lecture notes by Scott Shenker and John Jannotti

Chen Avin

Last time

• DNS

• Today: DHT

3

DHT - Distributed hash table

– Database has (key, value) pairs;

• key: ss number; value: human name

• key: domain name; value: IP address

– Peers query DB with key

– DB returns values that match the key

– Peers can also insert (key, value) peers

P2P

DHTs

• IDs from a flat namespace

– Contrast with hierarchical IP, DNS

• Metaphor: hash table, but distributed

• Interface

– Get(key)

– Put(key, value)

• How?

– Every node supports a single operation:

 Given a key, route messages to node holding

key

Example: The Chord Ring

• m bits identifiers

• identifier circle

• Node’s identifier by

hashing IP

• Key identifier by

hashing the key

• successor(k)

• N - # of nodes

• K - # of keys

• Overlay Network

111000

011000

Identifier to Node Mapping Example

• Node 8 maps [2,8]

• Node 14 maps [9,14]

• Node 21 maps [15, 21]

• …

• Node 1 maps [57, 0]

• Each node maintains

a pointer to its

successor

Consistent Hashing

• N nodes

• K keys

• Each node

responsible for about

K/N keys

• When nodes join/leave

about K/N keys

change location

Simple Lookup

• Each node maintains

its successor

• Route packet (ID, data)

to the node responsible

for ID using successor

pointers

• How long the search on

average?

• O(N) operation per

search when there

are N peers

Scalable Key Location

• Adding

short cuts

• Finger Table

• How many

entries?

• How long the

search?

ith entry at peer with id n is first peer with id >=)2(mod2 min

Key Lookup

• O(log N) neighbors

• Cutting the Distance

by half

• O(log N) operations

per search

• Namespace 𝟐𝒎

Stabilization Procedure

• Periodic operations performed by each node

N to maintain the ring:

STABILIZE() [N.successor = M]

 N->M: “What is your predecessor?”

 M->N: “x is my predecessor”

 if x between (N,M), N.successor = x

 N->N.successor: NOTIFY()

NOTIFY()

N->N.successor: “I think you are my successor”

M: upon receiving NOTIFY from N:

If (N between (M.predecessor, M))

 M.predecessor = N

Joining Operation

4

20

32
35

8

15

44

58

50

 Node with id=50 joins
the ring

 Node 50 needs to
know at least one
node already in the
system

- Assume known node

 is 15

succ=4

pred=44

succ=nil

pred=nil

succ=58

pred=35

Joining Operation

4

20

32
35

8

15

44

58

50

 Node 50: send join(50)
to node 15

 Node 44: returns node
58

 Node 50 updates its
successor to 58 join(50)

succ=58

succ=4

pred=44

succ=nil

pred=nil

succ=58

pred=35

58

Joining Operation

4

20

32
35

8

15

44

58

50

 Node 50: send
stabilize() to node
58

 Node 58:

- Replies with 44

- 50 determines
it is the right
predecessor

succ=58

pred=nil

succ=58

pred=35

stabilize():
“What is your predecessor?”

succ=4
pred=44

Joining Operation

4

20

32
35

8

15

44

58

50

 Node 50: send
notify() to node
58

 Node 58:

- update
predecessor to
50

succ=58

pred=nil

succ=58

pred=35

notify():
“I think you are my successor”

pred=50

succ=4

pred=44

Joining Operation

4

20

32
35

8

15

44

58

50

 Node 44 sends a stabilize
message to its successor, node
58

 Node 58 replies with 50

 Node 44 updates its successor
to 50

succ=58
stabilize():
“What is your predecessor?”

succ=50

pred=50

succ=4

pred=nil

succ=58

pred=35

Joining Operation

4

20

32
35

8

15

44

58

50

 Node 44 sends a notify
message to its new successor,
node 50

 Node 50 sets its predecessor to
node 44

succ=58

succ=50

notify()
pred=44

pred=50

pred=35

succ=4

pred=nil

Joining Operation (cont’d)

4

20

32
35

8

15

44

58

50

 This completes the joining
operation!

succ=58

succ=50

pred=44

pred=50

Chord

• There is a tradeoff between routing table

size and diameter of the network

• Chord achieves diameter O(log n) with

O(log n)-entry routing tables

Many other DHTs

• CAN
– Routing in n-dimensional space

• Pastry/Tapestry/Bamboo
– (Book describes Pastry)

– Names are fixed bit strings

– Topology: hypercube (plus a ring for fallback)

• Kademlia
– Similar to Pastry/Tapestry

– But the ring is ordered by the XOR metric

– Used by BitTorrent for distributed tracker

• Viceroy
– Emulated butterfly network

• Koorde
– DeBruijn Graph

– Each node connects to 2n, 2n+1

– Degree 2, diameter log(n)

• …

Discussion

• Query can be implemented
– Iteratively: easier to debug

– Recursively: easier to maintain timeout values

• Robustness
– Nodes can maintain (k>1) successors

– Change notify() messages to take that into account

• Performance
– Routing in overlay can be worse than in the underlay

– Solution: flexibility in neighbor selection

• Tapestry handles this implicitly (multiple possible next
hops)

• Chord can select any peer between [2n,2n+1) for finger,
choose the closest in latency to route through

Where are they now?

• DHTs allow coordination of MANY nodes
– Efficient flat namespace for routing and lookup

– Robust, scalable, fault-tolerant

• If you can do that
– You can also coordinate co-located peers

– Now dominant design style in datacenters

• E.g., Amazon’s Dynamo storage system

– DHT-style systems everywhere

• Similar to Google’s philosophy
– Design with failure as the common case

– Recover from failure only at the highest layer

– Use low cost components

– Scale out, not up

