
CSCI-1680

CDN & P2P

Based partly on lecture notes by Scott Shenker and John Jannotti andRodrigo Fonseca

Chen Avin

And “Computer Networking: A Top Down Approach” - 6th edition

Last time

• DNS & DHT

• Today: P2P & CND

– P2P Benefits

– Bit Torrent & Skype

– Caching & Content Distribution Networks

Content distribution networks

• challenge: how to stream content (selected

from millions of videos) to hundreds of

thousands of simultaneous users?

• option 1: single, large “mega-server”

– single point of failure

– point of network congestion

– long path to distant clients

– multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Content distribution networks

• challenge: how to stream content (selected
from millions of videos) to hundreds of
thousands of simultaneous users?

• option 2: store/serve multiple copies of
videos at multiple geographically distributed
sites (CDN)
– enter deep: push CDN servers deep into many access

networks

• close to users

• used by Akamai, 1700 locations

– bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

• used by Limelight

CDN: “simple” content access scenario

Bob (client) requests video http://netcinema.com/6Y7B23V
 video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for for video

http://netcinema.com/6Y7B23V

from netcinema.com

web page 2

2. resolve http://netcinema.com/6Y7B23V

via Bob’s local DNS

netcinema’s

authorative DNS

3

3. netcinema’s DNS returns URL

http://KingCDN.com/NetC6y&B23V
4

4&5. Resolve

http://KingCDN.com/NetC6y&B23

via KingCDN’s authoritative DNS,

which returns IP address of KIingCDN

server with video

5 6. request video from

KINGCDN server,

streamed via HTTP

KingCDN

authoritative DNS

CDN cluster selection strategy

• challenge: how does CDN DNS select
“good” CDN node to stream to client
– pick CDN node geographically closest to client

– pick CDN node with shortest delay (or min # hops)
to client (CDN nodes periodically ping access
ISPs, reporting results to CDN DNS)

– IP anycast

• alternative: let client decide - give client a
list of several CDN servers
– client pings servers, picks “best”

– Netflix approach

Multmedia Networking 7-6

How Akamai works

• Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the
client

• Lots of DNS tricks. BestBuy is a customer
– Delegate name resolution to Akamai (via a CNAME)

• From Brown:
dig www.bestbuy.com

;; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.

www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

• From Berkeley, CA:
a1105.b.akamai.net. 20 IN A 198.189.255.200

a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

DNS Resolution
dig www.bestbuy.com

;; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.

www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240

;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS n1b.akamai.net.

b.akamai.net. 1101 IN NS n0b.akamai.net.

;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45

n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server

close to the client’s local resolver

• Uses knowledge of network: BGP feeds,

traceroutes. Their secret sauce…

What about the content?

• Say you are Akamai

– Clusters of machines close to clients

– Caching data from many customers

– Proxy fetches data from origin server first time it

sees a URL

• Choose cluster based on client network

location

• How to choose server within a cluster?

• If you choose based on client

– Low hit rate: N servers in cluster means N cache

misses per URL

Consistent Hashing [Karger et al., 99]

• URLs and Caches are mapped to points on a circle
using a hash function

• A URL is assigned to the closest cache clockwise

• Minimizes data movement on change!
– When a cache is added, only the items in the preceding

segment are moved

– When a cache is removed, only the next cache is affected

A

B

C

0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Consistent Hashing [Karger et al., 99]

• Minimizes data movement

– If 100 caches, add/remove a proxy invalidates ~1% of objects

– When proxy overloaded, spill to successor

• Can also handle servers with different capacities.

How?

– Give bigger proxies more random points on the ring

A

B

C

0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Pure P2P architecture

• no always-on server

• arbitrary end systems
directly communicate

• peers are intermittently
connected and change IP
addresses

examples:
– file distribution

(BitTorrent)

– Streaming (KanKan)

– VoIP (Skype)

Peer-to-Peer Systems

• How did it start?
– A killer application: file distribution

– Free music over the Internet! (not exactly legal…)

• Key idea: share storage, content, and
bandwidth of individual users
– Lots of them

• Big challenge: coordinate all of these users
– In a scalable way (not NxN!)

– With changing population (aka churn)

– With no central administration

– With no trust

– With large heterogeneity (content, storage,
bandwidth,…)

3 Key Requirements

• P2P Systems do three things:

• Help users determine what they want

– Some form of search

– P2P version of Google

• Locate that content

– Which node(s) hold the content?

– P2P version of DNS (map name to location)

• Download the content

– Should be efficient

– P2P form of Akamai

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server
to N peers?
– peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

File distribution time: client-server

• server transmission: must

sequentially send (upload)

N file copies:

– time to send one copy: F/us

– time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate
 min client download time: F/dmin

us

network

di

ui

F

File distribution time: P2P

• server transmission: must

upload at least one copy

– time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network

di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Napster (1999)

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

• Search & Location: central server

• Download: contact a peer, transfer

directly

• Advantages:

– Simple, advanced search possible

• Disadvantages:

– Single point of failure (technical and … legal!)

– The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3 ?

xyz.mp3

An “unstructured” overlay network

• Search & Location: flooding (with TTL)

• Download: direct

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3

KaZaA: Flooding w/ Super Peers (2001)

• Well connected nodes can be installed

(KaZaA) or self-promoted (Gnutella)

supernode
 overlay
 network

Voice-over-IP: Skype

 proprietary application-
layer protocol (inferred
via reverse
engineering)

 encrypted msgs

 P2P components:

Skype clients (SC)

 clients: skype peers
connect directly to
each other for VoIP call

 super nodes (SN):
skype peers with
special functions

 overlay network: among
SNs to locate SCs

 login server

Skype
login server supernode (SN)

P2P voice-over-IP: skype

skype client operation:

1. joins skype network by
contacting SN (IP address
cached) using TCP

2. logs-in (usename,
password) to centralized
skype login server

3. obtains IP address for
callee from SN, SN
overlay
or client buddy list

4. initiate call directly to
callee

Skype
login server

• problem: both Alice,

Bob are behind “NATs”

– NAT prevents outside peer

from initiating connection

to insider peer

– inside peer can initiate

connection to outside

 relay solution: Alice, Bob maintain
open connection

 to their SNs
 Alice signals her SN to connect

to Bob
 Alice’s SN connects to Bob’s

SN
 Bob’s SN connects to Bob over

open connection Bob initially
initiated to his SN

Skype: peers as relays

Lessons and Limitations

• Client-server performs well
– But not always feasible

• Things that flood-based systems do well
– Organic scaling

– Decentralization of visibility and liability

– Finding popular stuff

– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff

– Fancy distributed queries

– Vulnerabilities: data poisoning, tracking, etc.

– Guarantees about anything (answer quality, privacy,
etc.)

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

• file divided into 256Kb chunks

• peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

• peer joining torrent:

– has no chunks, but will
accumulate them over time
from other peers

– registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

• at any given time, different

peers have different

subsets of file chunks

• periodically, Alice asks each

peer for list of chunks that

they have

• Alice requests missing

chunks from peers, rarest

first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)
 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer
 newly chosen peer may join top 4

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

