
CSCI-1680

CDN & P2P

Based partly on lecture notes by Scott Shenker and John Jannotti andRodrigo Fonseca

Chen Avin

And “Computer Networking: A Top Down Approach” - 6th edition

Last time

• DNS & DHT

• Today: P2P & CND

– P2P Benefits

– Bit Torrent & Skype

– Caching & Content Distribution Networks

Content distribution networks

• challenge: how to stream content (selected

from millions of videos) to hundreds of

thousands of simultaneous users?

• option 1: single, large “mega-server”

– single point of failure

– point of network congestion

– long path to distant clients

– multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Content distribution networks

• challenge: how to stream content (selected
from millions of videos) to hundreds of
thousands of simultaneous users?

• option 2: store/serve multiple copies of
videos at multiple geographically distributed
sites (CDN)
– enter deep: push CDN servers deep into many access

networks

• close to users

• used by Akamai, 1700 locations

– bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

• used by Limelight

CDN: “simple” content access scenario

Bob (client) requests video http://netcinema.com/6Y7B23V
 video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for for video

http://netcinema.com/6Y7B23V

from netcinema.com

web page 2

2. resolve http://netcinema.com/6Y7B23V

via Bob’s local DNS

netcinema’s

authorative DNS

3

3. netcinema’s DNS returns URL

http://KingCDN.com/NetC6y&B23V
4

4&5. Resolve

http://KingCDN.com/NetC6y&B23

via KingCDN’s authoritative DNS,

which returns IP address of KIingCDN

server with video

5 6. request video from

KINGCDN server,

streamed via HTTP

KingCDN

authoritative DNS

CDN cluster selection strategy

• challenge: how does CDN DNS select
“good” CDN node to stream to client
– pick CDN node geographically closest to client

– pick CDN node with shortest delay (or min # hops)
to client (CDN nodes periodically ping access
ISPs, reporting results to CDN DNS)

– IP anycast

• alternative: let client decide - give client a
list of several CDN servers
– client pings servers, picks “best”

– Netflix approach

Multmedia Networking 7-6

How Akamai works

• Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the
client

• Lots of DNS tricks. BestBuy is a customer
– Delegate name resolution to Akamai (via a CNAME)

• From Brown:
dig www.bestbuy.com

;; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.

www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

• From Berkeley, CA:
a1105.b.akamai.net. 20 IN A 198.189.255.200

a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

DNS Resolution
dig www.bestbuy.com

;; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.

www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240

;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS n1b.akamai.net.

b.akamai.net. 1101 IN NS n0b.akamai.net.

;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45

n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server

close to the client’s local resolver

• Uses knowledge of network: BGP feeds,

traceroutes. Their secret sauce…

What about the content?

• Say you are Akamai

– Clusters of machines close to clients

– Caching data from many customers

– Proxy fetches data from origin server first time it

sees a URL

• Choose cluster based on client network

location

• How to choose server within a cluster?

• If you choose based on client

– Low hit rate: N servers in cluster means N cache

misses per URL

Consistent Hashing [Karger et al., 99]

• URLs and Caches are mapped to points on a circle
using a hash function

• A URL is assigned to the closest cache clockwise

• Minimizes data movement on change!
– When a cache is added, only the items in the preceding

segment are moved

– When a cache is removed, only the next cache is affected

A

B

C

0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Consistent Hashing [Karger et al., 99]

• Minimizes data movement

– If 100 caches, add/remove a proxy invalidates ~1% of objects

– When proxy overloaded, spill to successor

• Can also handle servers with different capacities.

How?

– Give bigger proxies more random points on the ring

A

B

C

0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Pure P2P architecture

• no always-on server

• arbitrary end systems
directly communicate

• peers are intermittently
connected and change IP
addresses

examples:
– file distribution

(BitTorrent)

– Streaming (KanKan)

– VoIP (Skype)

Peer-to-Peer Systems

• How did it start?
– A killer application: file distribution

– Free music over the Internet! (not exactly legal…)

• Key idea: share storage, content, and
bandwidth of individual users
– Lots of them

• Big challenge: coordinate all of these users
– In a scalable way (not NxN!)

– With changing population (aka churn)

– With no central administration

– With no trust

– With large heterogeneity (content, storage,
bandwidth,…)

3 Key Requirements

• P2P Systems do three things:

• Help users determine what they want

– Some form of search

– P2P version of Google

• Locate that content

– Which node(s) hold the content?

– P2P version of DNS (map name to location)

• Download the content

– Should be efficient

– P2P form of Akamai

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server
to N peers?
– peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

File distribution time: client-server

• server transmission: must

sequentially send (upload)

N file copies:

– time to send one copy: F/us

– time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate
 min client download time: F/dmin

us

network

di

ui

F

File distribution time: P2P

• server transmission: must

upload at least one copy

– time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network

di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Napster (1999)

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

• Search & Location: central server

• Download: contact a peer, transfer

directly

• Advantages:

– Simple, advanced search possible

• Disadvantages:

– Single point of failure (technical and … legal!)

– The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3 ?

xyz.mp3

An “unstructured” overlay network

• Search & Location: flooding (with TTL)

• Download: direct

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3

KaZaA: Flooding w/ Super Peers (2001)

• Well connected nodes can be installed

(KaZaA) or self-promoted (Gnutella)

supernode
 overlay
 network

Voice-over-IP: Skype

 proprietary application-
layer protocol (inferred
via reverse
engineering)

 encrypted msgs

 P2P components:

Skype clients (SC)

 clients: skype peers
connect directly to
each other for VoIP call

 super nodes (SN):
skype peers with
special functions

 overlay network: among
SNs to locate SCs

 login server

Skype
login server supernode (SN)

P2P voice-over-IP: skype

skype client operation:

1. joins skype network by
contacting SN (IP address
cached) using TCP

2. logs-in (usename,
password) to centralized
skype login server

3. obtains IP address for
callee from SN, SN
overlay
or client buddy list

4. initiate call directly to
callee

Skype
login server

• problem: both Alice,

Bob are behind “NATs”

– NAT prevents outside peer

from initiating connection

to insider peer

– inside peer can initiate

connection to outside

  relay solution: Alice, Bob maintain
open connection

 to their SNs
 Alice signals her SN to connect

to Bob
 Alice’s SN connects to Bob’s

SN
 Bob’s SN connects to Bob over

open connection Bob initially
initiated to his SN

Skype: peers as relays

Lessons and Limitations

• Client-server performs well
– But not always feasible

• Things that flood-based systems do well
– Organic scaling

– Decentralization of visibility and liability

– Finding popular stuff

– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff

– Fancy distributed queries

– Vulnerabilities: data poisoning, tracking, etc.

– Guarantees about anything (answer quality, privacy,
etc.)

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

• file divided into 256Kb chunks

• peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

• peer joining torrent:

– has no chunks, but will
accumulate them over time
from other peers

– registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers
 peer may change peers with whom it exchanges chunks
 churn: peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

• at any given time, different

peers have different

subsets of file chunks

• periodically, Alice asks each

peer for list of chunks that

they have

• Alice requests missing

chunks from peers, rarest

first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)
 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer
 newly chosen peer may join top 4

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

