CSCI-1680
CDN & P2P

Chen Avin

Based partly on lecture notes by Scott Shenker and John Jannotti andRodrigo Fonseca

And “Computer Networking: A Top Down Approach” - 6th edition

Last time

* DNS & DHT

 Today: P2P & CND
— P2P Benefits
— Bit Torrent & Skype
— Caching & Content Distribution Networks

Content distribution networks

« challenge: how to stream content (selected
from millions of videos) to hundreds of
thousands of simultaneous users?

« option 1: single, large “mega-server”
— single point of failure
— point of network congestion
— long path to distant clients
— multiple copies of video sent over outgoing link

....quite simply: this solution doesn’t scale

Content distribution networks

« challenge: how to stream content (selected
from millions of videos) to hundreds of
thousands of simultaneous users?

* option 2: store/serve multiple copies of
videos at multiple geographically distributed
sites (CDN)

— enter deep: push CDN servers deep into many access
networks

 close to users
» used by Akamai, 1700 locations
— bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks
« used by Limelight

CDN: “simple” content access scenario

Bob (client) requests video http://netcinema.com/6Y7B23V
video stored in CDN at http://KingCDN.com/NetC6y&B23V

1. Bob gets URL for for video

http://netcinema.com/6Y7B23V
from netcinema.com
web page

q n;.;-:f
% 2. resolve http://netcinema.com/6Y7B23V

I @a Bob’s local DNS
@\ -

6. request video from
485. Resolve

KINGCDN server, ,
streamed via HTTP = Bl http://KingCDN.com/NetC6y&B23
3 netcinema’s DNl returns URL via KingCDN’s authoritative DNS,

- Netenema s S which returns P address of KlingCDN

http://KingCDN.cp server with video

CDN cluster selection strategy

challenge: how does CDN DNS select
“good” CDN node to stream to client
— pick CDN node geographically closest to client

— pick CDN node with shortest delay (or min # hops)
to client (CDN nodes periodically ping access
ISPs, reporting results to CDN DNS)

— IP anycast

alternative: let client decide - give client a
list of several CDN servers

— client pings servers, picks “best”

— Netflix approach

7-6

How Akamal works

« Akamai has cache servers deployed close to clients
— Co-located with many ISPs

« Challenge: make same domain name resolve to a proxy close to the
client

 Lots of DNS tricks. BestBuy is a customer
— Delegate name resolution to Akamai (via a CNAME)

* From Brown:

dig www.bestbuy.com

:» ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME al1l105.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235

all05.b.akamai.net. 20 IN A 198.7.236.240

— Ping time: 2.53ms
 From Berkeley, CA:

all05.b.akamai.net. 20 IN A 198.189.255.200
all05.b.akamai.net. 20 IN A 198.189.255.207

— Ping time: 3.20ms

DNS Resolution

dig www.bestbuy.com

:» ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME al105.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235

all05.b.akamai.net. 20 IN A 198.7.236.240

;s AUTHORITY SECTION:

b.akamai.net. 1101 IN NS nlb.akamai.net.
b.akamai.net. 1101 IN NS nOb.akamai.net.
. ADDITIONAL SECTION:

nOb.akamai.net. 1267 IN A 24.143.194.45
nlb.akamai.net. 2196 IN A 198.7.236.236

* nlb.akamai.net finds an edge server
close to the client’s local resolver

« Uses knowledge of network: BGP feeds,
traceroutes. Their secret sauce...

What about the content?

Say you are Akamai
— Clusters of machines close to clients
— Caching data from many customers

— Proxy fetches data from origin server first time it
sees a URL

Choose cluster based on client network
ocation

« How to choose server within a cluster?

* If you choose based on client

— Low hit rate: N servers In cluster means N cache
misses per URL

Consistent Hashi NQ [Karger et al., 99]

« URLs and Caches are mapped to points on a circle
using a hash function

« A URL is assigned to the closest cache clockwise

 Minimizes data movement on change!

— When a cache is added, only the items in the preceding
segment are moved

— When a cache is removed, only the next cache is affected

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Consistent Hashi NQ [Karger et al., 99]

Minimizes data movement

— If 100 caches, add/remove a proxy invalidates ~1% of objects
— When proxy overloaded, spill to successor

Can also handle servers with different capacities.
&5 ow?

— Give bigger proxies more random points on the ring

http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf
http://www.cs.brown.edu/courses/csci2950-u/f10/papers/chash99www.pdf

Pure P2P architecture

* no always-on server

 arbitrary end systems
directly communicate

* peers are intermittently
connected and change IP
addresses

examples:

— file distribution
(BitTorrent)

— Streaming (KanKan)
— VoIP (Skype)

Peer-to-Peer Systems

« How did it start?

— AKkiller application: file distribution
— Free music over the Internet! (not exactly legal...)

 Key idea: share storage, content, and
bandwidth of individual users
— Lots of them

 Big challenge: coordinate all of these users
— In a scalable way (not NxN!)
— With changing population (aka churn)
— With no central administration
— With no trust

— With large heterogeneity (content, storage,
bandwidth,...)

3 Key Requirements

P2P Systems do three things:

Help users determine what they want
— Some form of search
— P2P version of Google

Locate that content

— Which node(s) hold the content?

— P2P version of DNS (map name to location)
Download the content

— Should be efficient
— P2P form of Akamai

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server
to N peers?

— peer upload/download capacity is limited resource

u: server upload
capacity

d,: peer i download
capacity

network (with abundant ' =D
=g

bandwidth) U; \

u;: peer i upload
capacity

File distribution time: client-server

server transmission: must

sequentially send (upload)

N file copies:

— time to send one copy: F/ug

— time to send N copies: NF/ug
% client: each client must

download file copy

= d_.. = min client download rate
* min client download time: F/d_

time to distribute F
to N clients using

client-server approach DC-S 2 maX{NF/uS,’F/dmin}

/

/

iIncreases linearly in N

File distribution time: P2P

e server transmission: must
upload at least one copy
— time to send one copy: F/u,

< client: each client must

download file copy
* min client download time: F/d_.

» clients: as aggregate must download NF bits
= max upload rate (limting max download rate) is u, + 2u,

time to distribute F

© Igflge;;;rltj)igﬁ DPZP 2 max{l:/us,’F/dmin&\I F/(US + Zui)}

/
iIncreases linearly in N ... /
... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, u,=10u, d., = U,

3.5
.E -o— Client-Server
.5 2.5
5
o) 2
@
A 1.5
S
g
£
s 0.5

O [[[[[[

Napster (1999)

= |

Xyz.mp3

Napster

= |

Xyz.mp3

g g Xyz.mp3?

Napster

= |

Xyz.mp3

Napster

Xyz.mp3

Napster

Search & Location: central server

 Download: contact a peer, transfer
directly

Advantages:
— Simple, advanced search possible

Disadvantages:
— Single point of failure (technical and ... legal!)
— The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

« Search & Location: flooding (with TTL)
 Download: direct

\ /E\ xyz .
g

Gnutella: Flooding on Overlays

\ /E\ xyz .
-)

FIoodlng

Gnutella: Flooding on Overlays

N 1
/ \ |
% L
mp3 /
] I /
=7 > | xyzzmp3?
N .
i Flooding

Gnutella: Flooding on Overlays

A
|

KaZaA: Flooding w/ Super Peers (2001)

 Well connected nodes can be installed
(KaZaA) or self-promoted (Gnutella)

Voice-over-IP: Skype

< proprietary application- [y Slope clients (SC)
layer protocol (inferred
via reverse

engineering)

= encrypted msgs Skype
< P2P components: login server === supernode (SN)
" clients: skype peers S
connect directly to i Superlnode
each other for VolIP call p overiay
. network
Skype skvide;

" super nodes (SN):
skype peers with
special functions

= overlay network:among
SNs to locate SCs

" |ogin server

P2P voice-over-IP: skype

skype client operation:

| joins skype network by
contacting SN (IP address |
cached) using TCP Skype

2. logs-in (usename, login server
password) to centralized
skype login server

3. obtains IP address for
callee from SN, SN
overlay

" or client buddy list

4. initiate call directly to
callee

Skype: peers as relays

 problem: both Alice, - 3w
: ‘“ »” q = =
Bob are behind "NATs O S ,;ggséb
— NAT prevents outside peer e ’ \‘ / S
from initiating connection S "

to insider peer
— Inside peer can initiate |
connection to outside
+ relay solution:Alice, Bob maintain q
open connection kv

NG ©

AT
4

P
.

to their SNs

= Alice signals her SN to connect q q skve s
to Bob o \g

= Alice’ s SN connects to Bob’ s
SN

= Bob’s SN connects to Bob over
open connection Bob initially
initiated to his SN

Lessons and Limitations

* Client-server performs well
— But not always feasible

 Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

 Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabillities: data poisoning, tracking, etc.

— Guarantees about anything (answer quality, privacy,
etc.)

P2P file distribution: BitTorrent

file divided into 256Kb chunks
peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file
B 9. %
1 B f"\

Bl -
| e

Alice arrives ... \&
... obtains list L

of peers from tracker
... and begins exchanging

<A
o

P2P file distribution: BitTorrent

e peer joining torrent:
— has no chunks, but will

accumulate them over time
from other peers

— registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors™)

R/
L4

while downloading, peer uploads chunks to other peers
peer may change peers with whom it exchanges chunks
churn: peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

R/ R/
L4 L4

/
0‘0

BitTorrent: requesting, sending file chunks

requesting chunks:

at any given time, different
peers have different
subsets of file chunks

periodically, Alice asks each
peer for list of chunks that
they have

Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
< Alice sends chunks to those
four peers currently sending her

chunks at highest rate
= other peers are choked by Alice
(do not receive chunks from her)
" re-evaluate top 4 every |0 secs

< every 30 secs: randomly select
another peer, starts sending

chunks
= “optimistically unchoke” this peer
= newly chosen peer may join top 4

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

| b higher upload rate: find better
q trading partners, get file faster !

