Software Defined Networks

Chen Avin

Based on Lecture notes from Scott Shenker, Nick Mckown and Google

How do we build large-scale
software systems?

Liskov: “The Power of Abstractions”

“Modularity based on abstraction
is the way things get done”

Abstractions = Interfaces =@ Modularity

* Modularity provides:
- Code reuse
- Flexibility of implementation
- Conceptual separation of concerns

Specialized
Applications

Specialized
Operating
System

Specialized
Hardware

Vertically integrated
Closed, proprietary
Slow innovation
Small industry

WJNNNERRNNEg

— Open Interface

Specialized
Applications

Specialized Windows WSl | i [l
Operating -

System
¥ — Open Interface

Specialized

Hardware l| Microprocessor

Vertically integrated Horizontal

Closed, proprietary Open interfaces
Slow innovation Rapid innovation
Small industry Huge industry

How do we find abstractions?

Abstractions = Problem Decomposition

* Decompose problem into basic components (tasks)

Define an abstraction for each component

Implementation of abstraction can focus on one task

If tasks still too hard to implement, return to step 1

Specialized
Features

LLUS [T]
Specialized
Control

Plane
Specialized
Hardware

Vertically integrated
Closed, proprietary
Slow innovation

el L

Open Interface

SpeC|aI|zed = -
-

Features
AR Control Control
Spec|a||zed Plane Plane

Control
— Open Interface

Plane EE

Spemahzed
Hardware

Merchant
Switching Chips

Vertically integrated Horizontal
Closed, proprietary Open interfaces
Slow innovation Rapid innovation

What abstractions have been
applied to networking?

The Two Networking “Planes”

* Data plane: process packets with local fwding state
- Fwding state + packet header =» forwarding decision

* Control plane: compute the forwarding state
- Distributed protocols
- Manual configuration (and scripting)
- Centralized computation

* These different planes require different abstractions

10

Data Plane Abstractions: Layers

Applications
= DUIIL On...

email WWW phone...

Reliable (or unreliable) transport kSMTP — mp...}
conc INAAIEE T

Best-effort global packet delivery

--builton.... ethernet PP

Best-effort local packet delivery (csm e sonet_,,\

built on copper fibre radio

Local physical transfer of bits

11

Control Plane Abstractions

12

(Too) Many Control Plane Mechanisms

* Variety of goals:
- Routing: distributed routing algorithms
- Isolation: ACLs, VLANSs, Firewalls,...
- Traffic engineering: adjusting weights, MPLS, ...

* No modularity, limited functionality

* Control Plane: mechanism without abstraction
- Too many mechanisms, not enough functionality

13

This is crazy!

16

Programming Analogy

* What if you were told to write a program that must...
- Be aware of the hardware you were running on
- Specify where each bit was stored

* Programmer would immediately define abstractions:
- Machine-independent interface
- Virtual memory interface

* Programmers use abstractions to separate concerns
- Network designers should too!

17

Separate Concerns with Abstractions

1. Be compatible with low-level hardware/software
Need an abstraction for general forwarding model

2. Make decisions based on entire network
Need an abstraction for network state

1. Compute the configuration of each physical device
Need an abstraction that simplifies configuration

18

Forwarding Abstraction

* Express intent independent of implementation
- Hardware (e.g., ASIC structure and capabilities)
- Software (e.g., vendor-independent)

* OpenFlow is current proposal for forwarding
- Standardized interface to switch
- Configuration in terms of flow entries: <header, action>

* Design details concern exact nature of:
- Header matching
- Allowed actions

19

Network State Abstraction
* Abstract away complicated distributed mechanisms

* Abstraction: global network view
- Annotated network graph provided through an API
- Network elements can be controlled via this API

* Implementation: “Network Operating System”
- Runs on servers in network (replicated for reliability)

* Information flows both ways
- Information from routers/switches to form “view”
- Configurations to routers/switches to control forwarding

20

Network of Switches and/or Routers

-

e
@

Traditional Control Mechanism

Distributed algorithm running between neighbors
Complicated task-specific distributed algorithm

Software Defined Network (SDN)

Network OS

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Software Defined Network (SDN)

L Control Program J

Global Network View @p
Network OS

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Major Change in Paradigm

e Control program: Configuration = Function(view)

* Control mechanism is now program using NOS API
- Not a distributed protocol, now just a graph algorithm

* Easier to write, maintain, verify, reason about, ...

22

Specification Abstraction

* Control mechanism must express desired behavior
- Whether it be isolation, access control, or QoS

* It should not be responsible for implementing that
behavior on physical network infrastructure

- Requires configuring the forwarding tables in each switch

* Proposed abstraction: abstract view of network
- Abstract view models only enough detail to specify goals
- Will depend on task semantics

* Analogy: programming languages and compilers

23

Simple Example: Access Control

Abstract
Network
View

\ Global

Network
View

24

Software Defined Network

Abstract Network View

Virtualization Layer :

Global Network View

()
Network OS :

25

Clean Separation of Concerns

e Control program: express goals on abstract view
- Driven by Operator Requirements

* Virtualization Layer: abstract view €=>» global view
- Driven by Specification Abstraction for particular task

* NOS: global view €=>» physical switches
- API: driven by Network State Abstraction
- Switch interface: driven by Forwarding Abstraction

26

SDN: Layers for the Control Plane

Abstract Network View

Network Virtualization:

Global Network View

()
Network OS :

27

Abstractions Don’t Eliminate Complexity

* Every component of system is tractable
- NOS, Virtualization are still complicated pieces of code

e SDN main achievements:

- Simplifies interface for control program (user-specific)
- Pushes complexity into reusable code (SDN platform)

* Just like compilers....

28

What Should | Remember About SDN?

31

Four Crucial Points

* SDN is merely set of abstractions for control plane
- Not a specific set of mechanisms
- OpenFlow is least interesting aspect of SDN, technically

* SDN involves computing a function....
- NOS handles distribution of state

e ...on an abstract network
- Can ignore actual physical infrastructure

* Network virtualization is the “killer app”
- Already virtualized compute, storage; network is next

32

SDN Vision: Networks Become “Normal”

* Hardware: Cheap, interchangeable, Moore’s Law

» Software: Frequent releases, decoupled from HW

* Functionality: Mostly driven by SW
- Edge (software switch)
- Control program

e Solid intellectual foundations

39

Simple example

OSPF
— RFC 2328: 245 pages

Distributed System

— Builds consistent, up-to-date map
of the network: 101 pages

Dijkstra’ s Algorithm
— Operates on map: 4 pages

Example

Network OS

v Packet
: Forwarding
Custom Hardware /
Packet
Forwarding
. Packet
Forwarding

Packet
Forwarding

OpenFlow Forwarding Abstraction

[Control Program A “ Control Program B]

Network OS

“If header = p, send to port 4”

“If header = q, overwrite header with r,
add-header s, and send to ports 5,6”

“If header = ?, send to me”

Packet
Forwarding

Packet

Forwarding Packet

Forwarding

GO gle OpenFlow @ Google

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

e R5-RG6 link fails
o R1, R2, R4 autonomously try for next best path

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

e R5-RG6 link fails
o R1, R2, R4 autonomously try for next best path
o R1 wins, R2, R4 retry for next best path

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

e R5-RG6 link fails

o R1, R2, R4 autonomously try for next best path
o R1 wins, R2, R4 retry for next best path
o R2 wins this round, R4 retries again

Convergence After Failure Google

e Flows: R1->R6: 20; R2->R6: 20; R4->R6: 20

e R5-RG6 link fails

R1, R2, R4 autonomously try for next best path
R1 wins, R2, R4 retry for next best path

R2 wins this round, R4 retries again

R4 finally gets third best path

o

o O O

Centralized Traffic Engineering Google

e Simple topology

e Flows:
o R1->R6: 20; R2->R6: 20; R4->R6: 20

Centralized Traffic Engineering Google

e Flows:

o R1->R6: 20; R2->R6: 20; R4->R6: 20
e Rb5-RG6 fails

o R5 informs TE, which programs routers in one shot

Centralized Traffic Engineering Google

e Simple topology

e Flows:

o R1->R6: 20; R2->R6: 20; R4->R6: 20
e R5-RG6 link fails

o R5 informs TE, which programs routers in one shot
o Leads to faster realization of target optimum

Advantages of Centralized TE Google
e Better network utilization with global picture
e Converges faster to target optimum on failure
e Allows more control and specifying intent
o Deterministic behavior simplifies planning vs.

overprovisioning for worst case variability

e Can mirror production event streams for testing
o Supports innovation and robust SW development

e Controller uses modern server hardware
o 50x (!) better performance

Google's WAN Google

Two backbones
o Internet facing (user traffic)
o Datacenter traffic (internal)

e Widely varying requirements: loss sensitivity,
availability, topology, etc.

e Widely varying traffic characteristics: smooth/diurnal vs.
bursty/bulk

e Therefore: built two separate logical networks
o [|-Scale (bulletproof)
o G-Scale (possible to experiment)

Google's OpenFlow WAN Google

L caiie

Chaasto fuzhiu
-5

4
&y o
adV

e

heies o it

o s
gl

ey Luzon)

s e

G-Scale WAN Usage Google

SDN fully
Deployed
o Exit testing SDN ¢ T
£ "opt in" rollout
a network Central TE
Deployed
Jan/2011 Julfi2011 Jan/2012

Jan/2010 Jull2010

How SDN will
shape networking

Nick McKeown
Stanford University

With: Martin Casado, Teemu Koponen, Scott Shenker
... and many others

With thanks to: NSF, GPO, Stanford Clean Slate Program,

Cisco, DoCoMo, DT, Ericsson, Google, HP, Huawei, NEC, Xilinx

A Gentle Introduction to

Software Defined Networks

Scott Shenker
with Martin Casado, Teemu Koponen, Nick McKeown
(and many others....)

