
CSCI-1680

Wrap-up Lecture

Chen Avin

With some material from Jen Rexford

Administrivia

• Today is the last class!

• Two more things to go:
– Final project, due this Friday

– Final Exam: Thursday, Dec 17th, 2pm

• How do you study?
– Any covered topic is fair game, but more

emphasis on content given after midterm (TCP
on)

– Lecture slides, homeworks, plus relevant
sections of the book

– If in doubt, no topic not covered in class will be
on the exam

What you (hopefully) learned from this

course

• Skill: Network programming
– C programming (most of you)

– Socket programming

– Server programming

– Implementing protocols

• Knowledge: How the Internet
Works
– IP Protocol suite

– Internet Architecture

– Applications (Web, DNS, P2P, …)

• Insight: key concepts
– Protocols

– Layering

– Naming

Introduction

• What is the Internet?

• Network edge

• Network core

• Network of networks

• Internet structure and ISPs

• Delay & loss in packet-switched networks

• Protocol layers, service models

• History of the Internet

Physical Layer

• Modulation

• Encoding

Link Layer

• Framing

• Errors, reliability, performance

• Sliding window

• Medium Access Control (MAC)

• Case study: Ethernet

• Link Layer Switching

– STP

Network Layer - IP

• Philosophy and Overview

• Forwarding and Routing

• IPv4 Datagram format

• IPv4 addressing - CIDR

• ARP, DHCP, ICMP, NAT

• Tunneling

• IPv6

Network Layer - Routing

• Routing Algorithms

• Link State

• Distance Vector

• RIP

• OSPF

• Hierarchical routing

• BGP

• What’s inside a router

Network Layer - More

• Multicasting

– Spanning tree

– RPF

• Mobile IP

• SDN

Transport Layer

• Transport layer services

• Multiplexing/demultiplexing

• UDP

• Reliable data Transfer

• TCP

Transport Layer - TCP

• Segment structure

• Reliable data transfer

• Flow control

• Connection management

• Congestion control

• Congestion avoidance

Application layer

• Principles of network applications

• Web and HTTP

• Electronic Mail

• SMTP, POP3, IMAP

• DNS

• P2P applications

• Socket Programming

Wireless Networking

• Background

• Wireless Link Characteristics

• IEEE 802.11 Wireless LAN

• MAC Protocol: CSMA/CA

• Mobility

– Direct and Indirect routing

Security

• Classes of attacks

• Basic security requirements

– Confidentiality

– Integrity

– Authentication

– Provenance

• Simple cryptographic methods

• Cryptographic toolkit (Hash, Digital Signature, …)

• Certificate Authorities

• SSL / HTTPS

Networking Principles

• We saw many layers and protocols, but
some principles are common to many

• Some are general CS concepts
– Hierarchy

– Indirection

– Caching

– Randomization

• Some are somewhat networking-specific
– Layering

– Multiplexing

– End-to-end argument

– Soft-state

Layering

• Strong form of encapsulation,

abstraction

• Each layer has three interfaces:

– Services provided to upper layer

– Protocol to communicate with peer at the same

layer

– Using the services of the lower layer

• Provided interface hides all details of

internal interface and lower layers

• Can be highly recursive

– E.g., IP over DNS, File system over Gmail!

Layering on the Internet

17

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

router router

HTTP message

TCP segment

IP packet IP packet IP packet

Ethernet frame Ethernet frame SONET frame

Layering: IP as a Narrow Waist

• Many applications protocols on top of UDP
& TCP

• IP works over many types of networks

• This is the “Hourglass” architecture of the
Internet.
– If every network supports IP, applications run over

many different networks (e.g., cellular network)

Layering: Data Encapsulation

• One layer’s data is the (opaque) payload of

the next

Stream (Application)

 Segments (TCP)

 Packets (IP)

 Frames (Ethernet)

 Encoding: bits -> chips

 Modulation: chips -> signal

variations

Ethernet Frame IP Packet TCP Segment Application data

Multiplexing: Access

• Sharing a single channel

• E.g.,

– NAT: multiple nodes share a single IP address

• De-multiplexing: NAT uses 5-tuple to disambiguate

– SSH port forwarding

• Only port 22 is open, can tunnel other ports

• ssh other.host.com –L 5900:other.host.com:5900

– VPN

Multiplexing: Reuse

• No need to re-implement functionality

– Several streams/flows can use the services of a

protocol

• E.g.:

– IP/ARP/AppleTalk on Ethernet: demux EtherType

– TCP/UDP/DCCP/… on IP: demux Protocol ID

– HTTP/SIP/SMTP/… on TCP/UDP: demux on Port

– Multiple hosts on one HTTP server: demux on Host:

field

Hierarchy Examples: IP Routing

• IP Addressing

– Hierarchical assignment of address blocks

– IANA -> Regional Internet Registries -> ISPs

– Decentralized control

• Topology

– (Roughly) correlated with addressing

– Allows aggregation (CIDR)

• Brown owns 128.148.0.0/16

– Decreases size of routing tables!

Hierarchy Examples: IP Routing

• AS-level Topology

– Separates intra and inter-domain routing

– ASs have own economic interests

– Delegation of control

• Policy in inter-domain routing

• Complete control of intra-domain routing

• Hierarchical Topology

– Transit, Multi-homed, Stub ASs

Hierarchy Examples: DNS

• Hierarchical name database

• Allows delegation of control

– Each organization controls a sub-tree

– May delegate control

• Allows scaling of the infrastructure

– A DNS server only needs to know about its sub-

domains

Many Translations

• DHCP: Given a MAC Address, assign an IP

address

– Uses IP broadcast to find server

• ARP: Given an IP address, find Ethernet MAC

Addresses

– Uses Link Layer broadcast to find node

• DNS: Given a Name, find an IP address

– Uses IP unicast/anycast to well known roots, to bootstrap

– Relies on IP routing infrastructure, DNS hierarchy

• DHT: Given a key, find a node

– Uses IP unicast plus efficient flat namespace routing

Caching

• Duplicate data stored elsewhere
– Reduce latency for accessing the data

– Reduce the load on other parts of the system

• Often quite effective
– Locality of reference: temporal locality and small

set of popular items

• Examples:
– Web caching

– DNS caching

– ARP caching

– Learning bridges

DNS Caching

• What is cached?

– Mapping of names to IP addresses

– Lookups that failed

– IP addresses of name servers

• Reduces latency

• Reduces load on hierarchy

• Why is it effective?

– Mostly read database

– Doesn’t change very often

– Popular sites are visited often

HTTP Caching

• What is cached?

– Web objects

• Where is it cached?

– Browser, proxy-cache, main memory on server

• Reduces latency, load

• What contributes to high hit rates?

– Cacheable content (mostly static)

– Sharing the cache among multiple users

– Small amount of popular content

Randomization

• Distributed adaptive algorithms

• Risk of synchronization

– Many parties respond to the same conditions in

the same way

– May lead to bad aggregate behavior

• Randomization can de-synchronize

– Example: Ethernet backoff mechanism

– Example: Random Early Drop

Interesting (extra) read: “The Synchronization of Periodic Routing Messages”,
Sally Floyd and Van Jacobson, Sigcomm 1993

Soft State

• State is stored in nodes by network
protocols
– E.g., a mapping, routing entry, cached object

• Key issue: how to deal with changes?

• Hard state: “valid unless told otherwise”
– “Managed” by originator of state

– Kept consistent, explicit invalidation

• Soft state: “valid if fresh”
– Removed by storing node on timeout

– Periodically refreshed as needed
• May need extra cost (on-demand revalidation or check)

– Can be seen as a hint

• Soft state reduces complexity
– At the cost of some unpredictability

Soft state examples

• DNS Caching

– TTL

– Can be wrong, check with origin on error

• Alternative

– Origin keeps track of copies

– Refresh copies on change in mapping

• Cache coherence is hard

– And expensive at scale!

• Others

– DHCP lease

But… There are BIG Challenges

• Designed in a different environment, with

different uses

– Identity / Accountability

– Access model

– Security

– Challenges to openness

Thank you and Good Luck!

And see you around….

