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Administrivia 

• Today is the last class! 

• Two more things to go: 
– Final project, due this Friday 

– Final Exam: Thursday, Dec 17th, 2pm 

• How do you study? 
– Any covered topic is fair game, but more 

emphasis on content given after midterm (TCP 
on) 

– Lecture slides, homeworks, plus relevant 
sections of the book 

– If in doubt, no topic not covered in class will be 
on the exam 



What you (hopefully) learned from this 

course 

• Skill: Network programming 
– C programming (most of you) 

– Socket programming 

– Server programming 

– Implementing protocols 

• Knowledge: How the Internet 
Works 
– IP Protocol suite 

– Internet Architecture 

– Applications (Web, DNS, P2P, …) 

• Insight: key concepts 
– Protocols 

– Layering 

– Naming 



Introduction 

• What is the Internet? 

• Network edge 

• Network core 

• Network of networks 

• Internet structure and ISPs 

• Delay & loss in packet-switched networks 

• Protocol layers, service models 

• History of the Internet 



Physical Layer 

• Modulation 

• Encoding 

 



Link Layer 

• Framing 

• Errors, reliability, performance 

• Sliding window 

• Medium Access Control (MAC) 

• Case study: Ethernet  

• Link Layer Switching 

– STP 

 



Network Layer - IP 

• Philosophy and Overview 

• Forwarding and Routing 

• IPv4 Datagram format 

• IPv4 addressing - CIDR 

• ARP, DHCP, ICMP, NAT 

• Tunneling 

• IPv6 



Network Layer - Routing  

• Routing Algorithms 

• Link State 

• Distance Vector 

• RIP 

• OSPF 

• Hierarchical routing 

• BGP 

• What’s inside a router 



Network Layer - More  

• Multicasting 

– Spanning tree 

– RPF 

• Mobile IP 

• SDN 



Transport Layer 

• Transport layer services 

• Multiplexing/demultiplexing 

• UDP 

• Reliable data Transfer 

• TCP  



Transport Layer - TCP 

• Segment structure 

• Reliable data transfer 

• Flow control 

• Connection management 

• Congestion control 

• Congestion avoidance  



Application layer 

• Principles of network applications 

• Web and HTTP 

• Electronic Mail 

• SMTP, POP3, IMAP 

• DNS 

• P2P applications 

• Socket Programming 



Wireless Networking  

• Background 

• Wireless Link Characteristics  

• IEEE 802.11 Wireless LAN 

• MAC Protocol: CSMA/CA 

• Mobility 

– Direct and Indirect routing 



Security 

• Classes of attacks 

• Basic security requirements 

– Confidentiality 

– Integrity 

– Authentication 

– Provenance 

• Simple cryptographic methods 

• Cryptographic toolkit (Hash, Digital Signature, …) 

• Certificate Authorities 

• SSL / HTTPS 



Networking Principles 

• We saw many layers and protocols, but 
some principles are common to many 

• Some are general CS concepts 
– Hierarchy 

– Indirection 

– Caching 

– Randomization 

• Some are somewhat networking-specific 
– Layering 

– Multiplexing 

– End-to-end argument 

– Soft-state 



Layering 

• Strong form of encapsulation, 

abstraction 

• Each layer has three interfaces: 

– Services provided to upper layer 

– Protocol to communicate with peer at the same 

layer 

– Using the services of the lower layer 

• Provided interface hides all details of 

internal interface and lower layers 

• Can be highly recursive 

– E.g., IP over DNS, File system over Gmail! 



Layering on the Internet 
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Layering: IP as a Narrow Waist 

• Many applications protocols on top of UDP 
& TCP 

• IP works over many types of networks 

• This is the “Hourglass” architecture of the 
Internet.  
– If every network supports IP, applications run over 

many different networks (e.g., cellular network) 



Layering: Data Encapsulation 

• One layer’s data is the (opaque) payload of 

the next 

Stream (Application) 

  Segments (TCP) 

    Packets (IP) 

      Frames (Ethernet) 

        Encoding: bits -> chips 

          Modulation: chips -> signal 

variations 

Ethernet Frame IP Packet TCP Segment Application data 



Multiplexing: Access 

• Sharing a single channel 

• E.g., 

– NAT: multiple nodes share a single IP address 

• De-multiplexing: NAT uses 5-tuple to disambiguate 

– SSH port forwarding 

• Only port 22 is open, can tunnel other ports 

• ssh other.host.com –L 5900:other.host.com:5900 

– VPN 

 



Multiplexing: Reuse 

• No need to re-implement functionality 

– Several streams/flows can use the services of a 

protocol 

• E.g.: 

– IP/ARP/AppleTalk on Ethernet: demux EtherType 

– TCP/UDP/DCCP/… on IP: demux Protocol ID 

– HTTP/SIP/SMTP/… on TCP/UDP: demux on Port 

– Multiple hosts on one HTTP server: demux on Host: 

field 



Hierarchy Examples: IP Routing 

• IP Addressing 

– Hierarchical assignment of address blocks 

– IANA -> Regional Internet Registries -> ISPs 

– Decentralized control 

• Topology 

– (Roughly) correlated with addressing 

– Allows aggregation (CIDR) 

• Brown owns 128.148.0.0/16 

– Decreases size of routing tables! 

 



Hierarchy Examples: IP Routing 

• AS-level Topology 

– Separates intra and inter-domain routing 

– ASs have own economic interests 

– Delegation of control 

• Policy in inter-domain routing 

• Complete control of intra-domain routing 

• Hierarchical Topology 

– Transit, Multi-homed, Stub ASs 



Hierarchy Examples: DNS 

• Hierarchical name database 

• Allows delegation of control 

– Each organization controls a sub-tree 

– May delegate control 

• Allows scaling of the infrastructure 

– A DNS server only needs to know about its sub-

domains 



Many Translations 

• DHCP: Given a MAC Address, assign an IP 

address 

– Uses IP broadcast to find server 

• ARP: Given an IP address, find Ethernet MAC 

Addresses 

– Uses Link Layer broadcast to find node 

• DNS: Given a Name, find an IP address 

– Uses IP unicast/anycast to well known roots, to bootstrap 

– Relies on IP routing infrastructure, DNS hierarchy 

• DHT: Given a key, find a node 

– Uses IP unicast plus efficient flat namespace routing 



Caching 

• Duplicate data stored elsewhere 
– Reduce latency for accessing the data 

– Reduce the load on other parts of the system 

• Often quite effective 
– Locality of reference: temporal locality and small 

set of popular items 

• Examples: 
– Web caching 

– DNS caching 

– ARP caching 

– Learning bridges 



DNS Caching 

• What is cached? 

– Mapping of names to IP addresses 

– Lookups that failed 

– IP addresses of name servers 

• Reduces latency 

• Reduces load on hierarchy 

• Why is it effective? 

– Mostly read database 

– Doesn’t change very often 

– Popular sites are visited often 



HTTP Caching 

• What is cached? 

– Web objects 

• Where is it cached? 

– Browser, proxy-cache, main memory on server 

• Reduces latency, load 

• What contributes to high hit rates? 

– Cacheable content (mostly static) 

– Sharing the cache among multiple users 

– Small amount of popular content 



Randomization 

• Distributed adaptive algorithms 

• Risk of synchronization 

– Many parties respond to the same conditions in 

the same way 

– May lead to bad aggregate behavior 

• Randomization can de-synchronize 

– Example: Ethernet backoff mechanism 

– Example: Random Early Drop 

Interesting (extra) read: “The Synchronization of Periodic Routing Messages”,  
Sally Floyd and Van Jacobson, Sigcomm 1993 



Soft State 

• State is stored in nodes by network 
protocols 
– E.g., a mapping, routing entry, cached object 

• Key issue: how to deal with changes? 

• Hard state: “valid unless told otherwise” 
– “Managed” by originator of state 

– Kept consistent, explicit invalidation 

• Soft state: “valid if fresh” 
– Removed by storing node on timeout 

– Periodically refreshed as needed 
• May need extra cost (on-demand revalidation or check) 

– Can be seen as a hint 

• Soft state reduces complexity 
– At the cost of some unpredictability 



Soft state examples 

• DNS Caching 

– TTL 

– Can be wrong, check with origin on error 

• Alternative 

– Origin keeps track of copies 

– Refresh copies on change in mapping 

• Cache coherence is hard 

– And expensive at scale! 

• Others 

– DHCP lease 



But… There are BIG Challenges 

• Designed in a different environment, with 

different uses 

– Identity / Accountability 

– Access model 

– Security 

– Challenges to openness 



Thank you and Good Luck! 

And see you around…. 


