
Capstone Project: LT Codes

Out: Tuesday, December 2nd
Due: Thursday, December 11th, 11:59 pm

1 Introduction

Erasure codes are a type of encoding of data, generally for transmission over a lossy medium, that survive
deletions (erasures) of parts of the message.1 They are especially useful for transmission of data across a
medium or network that can drop packets of data, when it is impractical for the receiver to be in constant
communication with the sender. Given a file with K blocks, the sender generates B > K encoded blocks
(B/K is called the rate of the code). The code is designed so that after receiving any set of blocks of size
at least K ′, for some K ′ slightly larger than K, the original data can be decoded with high probability. For
scenarios like broadcast, or for networks with very long one-way delays (think the Mars rover sending an
image to Earth), this is much more practical than the receiver acknowledging every block, as done in the
Transmission Control Protocol (TCP), which is used on the web and by many other internet applications.

Reed-Solomon codes are a type of erasure code, but are not very practical for many applications, in
particular because you have to set the rate prior to encoding and transmitting. The problem is that the rate
might need to change depending on the quality of the channel at the receiver(s)! There exist codes, however,
that are rateless, in that a practically infinite number of coded blocks can be generated from a fixed set of
source blocks, and the receiver can still can decode the original set of blocks with little overhead. These
codes are also called fountain codes, in an analogy to a constant stream of water from a fountain; any set of
drops from the fountain will serve the purpose of filling the receiver’s bucket.

In this project you will implement LT (Luby transform) Codes, which were the first practical rateless
erasure codes, and were invented in 1998 by Michael Luby and colleagues [1]. We will base our description
on chapter 50 of the book by MacKay [2], which is freely available for download. We recommend that you
read that chapter before beginning your project. In particular, you will need to understand the encoding and
decoding algorithms described in Sec. 50.1-50.2. We will use the distributions described in Sec. 50.3, but
you do not need to understand their justification.

LT Codes form the basis of the current state of the art in rateless codes, called Raptor Codes. Raptor
codes are faster than LT Codes, and generally require fewer blocks to decode, with K ′ very close to K.
They are used in several communication standards such as in broadcast of video to mobile devices. Their
implementation, however, is more involved.

2 Your Task

Your task is to implement two programs. The first, an encoder, reads a file and generates an infinite stream of
blocks encoded by an LT Code. The second, a decoder, reads such a stream until it is possible to reconstruct
the original file.

1External methods, such as checksums, are used to detect and discard parts of the encoded data whose contents have changed
(contain errors). We focus here on algorithms for encoding, and subsequently decoding, the original data from an error-free subset
of the transmitted message.

1



LT Codes depend on randomness for their implementation, and we will take care to specify how you will
generate the required (pseudo-)random numbers so that the encoder and decoder will work deterministically,
given proper pseudo-random seeds.

2.1 Algorithm

LT Codes comprise two main algorithms, one for encoding and another for decoding. We briefly sketch
them here, and refer to [2] for further detail.

Consider a source file with K fixed-length blocks sk, k = 1, . . . ,K. We assume a degree distribution
µ(d) is provided, which is a discrete probability distribution (probability mass function) on integers between
1 and K: µ(d) ≥ 0,

∑K
d=1 µ(d) = 1. Each encoded packet tn in the digital fountain is then produced as

follows:

1. Randomly sample the degree dn of the packet from µ(d).

2. Choose, uniformly at random, dn distinct input blocks. Set tn equal to the bitwise sum, modulo 2, of
these dn blocks.2

The encoded message is then these encoded packets, plus sufficient information for the decoder to determine
which source blocks where combined to produce each packet.

Now suppose that N encoded packets t1 . . . tN have been successfully received. For each packet tn,
construct a list of the source blocks sk which were used to encode that packet. The decoder then proceeds
as follows:

1. Find a packet tn which has exactly one source block sk in its list. If no such packet exists, the decoder
halts and fails. Otherwise:

(a) Set sk = tn.

(b) Set tn′ = tn′ ⊕ sk, for all packets tn′ which include source block sk in their encoding lists.

(c) Delete source block sk from all encoding lists.

2. Repeat step 1 until all source blocks are decoded.

As discussed by MacKay [2], it may be helpful to visualize the decoder using a sparse bipartite graph, in
which edges show which source blocks are encoded by each packet.

For those who are curious, this decoder is a special case of the celebrated sum-product or loopy belief
propagation (BP) algorithm. Because there can be no errors in received packets, only complete erasures, the
general BP algorithm substantially simplifies for LT codes.

We now discuss several important aspects of the implementation which you must follow.

2.2 Robust Soliton Distribution

While the encoder and decoder in Sec. 2.1 are valid algorithms for any degree distribution, the decoder only
succeeds with high probability if µ(d) is chosen with care. A starting point is the ideal soliton distribution:

ρ(1) =
1

K
, ρ(d) =

1

d(d− 1)
for d = 2, 3, . . . ,K. (1)

2This is equivalent to the bitwise XOR operation, denoted ⊕, on the blocks.

2



This distribution optimizes the expected probability that there is one decodable source block at each iteration,
but has an unacceptably high probability of failing at some iteration. To add robustness, we define the
following non-negative function:

τ(d) =
S

K

1

d
for d = 1, 2, . . . , bK/Sc − 1,

τ(d) =
S

K
ln(S/δ) for d = bK/Sc,

τ(d) = 0 for d > bK/Sc,

S = c ln(K/δ)
√
K.

Here, 0 < δ < 1 is a (conservative) bound on the probability that the decoding fails to succeed after a certain
number of packets are received. c > 0 is a free parameter, which can be tuned to optimize performance.
The robust soliton distribution is

µ(d) =
ρ(d) + τ(d)

Z
, Z =

K∑
d=1

ρ(d) + τ(d). (2)

The inclusion of Z creates a properly normalized distribution which sums to one.
The robust soliton distribution of Eq. (2) defines the distribution µ(d) which you will use when im-

plementing your encoder. To sample from µ(d), first compute the corresponding cumulative distribution
function:

M(d) =
d∑

d′=1

µ(d′) (3)

Let u denote a number uniformly distributed between 0 and 1, for example drawn from the pseudo-random
generator of Sec. 2.3. We can then construct a sample d from µ(d) by finding the unique bin (degree) for
which M(d− 1) ≤ u < M(d), where M(0) = 0.

For this assignment, we will fix the parameters for the distribution. You will use the values of c = 0.1
and δ = 0.5.

2.3 Pseudo-Random Number Generation

As we will see in Sec. 2.4, even though the algorithms depend on randomization, we need the precise
sequence of (pseudo-)random numbers used to be reproducible. To this end, you must use the pseudo-
random generator we define here. We will use a very simple pseudo-random generator, a variant of a linear
congruential generator, known as the Lehmer generator.3 With the particular parameters specified below, it
is called MinStd [3]. The generator is defined by the following equation:

next = A · state mod M (4)

We will useA = 16, 807 andM = 231−1 = 2, 147, 483, 647. M is a Mersenne prime, andA is a primitive
root modulo M , which guarantees maximum period for the random sequence. We define three operations
on a generator R:

1. R.nextInt(): returns next, and sets state = next.

2. R.setSeed(S): sets state = S.
3Although serving our purposes here, this pseudo-random number generator is a terrible choice for cryptography applications,

as well as for use in Monte Carlo simulations.

3



3. R.getState(): returns state.

You should take care to not overflow the integer type of your language in the multiplication. Here is a
snippet of C code that implements nextInt() observing the width of the data types:

uint32_t M = 2147483647UL;
uint32_t A = 16807;
uint32_t MAX_RAND = M - 1;

uint32_t state;

uint32_t nextInt() {
uint32_t next = (uint32_t)(((uint64_t)state * A) % M);
state = next;
return next;

}

To produce a number uniformly distributed between 0 and 1, which you need for generating samples
from µ(d), you should use double precision and divide the obtained integer by M − 1 = MAX RAND,
defined above.

We have provided a sequence of samples from this random number generator in Appendix A, which you
can use as an indication that your generator is producing correct samples.

2.4 Encoding the List of Blocks

One important aspect of the decoder is that it needs to know, for each encoded packet, the number and
identity of the source blocks from which it was created. Instead of encoding the list explicitly in the packet,
which could be wasteful, we will have the decoder generate this list using the same process as the one used
by the encoder. Since this involves sequences of (pseudo-)random numbers, we will have to make sure the
programs generate the same sequence for each block.

We will store in the encoded block the internal state of the random generator immediately before encod-
ing the block. This state, for our generator from Sec. 2.3, is simply a 32-bit number, which we call the seed
for the block. Given this seed, we will follow the steps below for the block. Since the state of the generator
changes with each invocation, it is important to follow these steps exactly:

1. Before processing block tn:

(a) If encoding tn, tn.seed = R.getState()

(b) If decoding tn, R.setSeed(tn.seed)

2. Generate r = R.nextInt() and use it to generate d from the robust soliton distribution (see Sec. 2.2).

3. Generate d distinct numbers between 0 and K − 1, using (R.nextInt() mod K) for each one. In case
of repetition, keep generating new numbers until you get d distinct source blocks. This is the list of
source blocks corresponding to this encoded block.

Note that according to this, the source blocks are numbered 0 to K − 1. Appendix B has a list of blocks
generated in sequence with a fixed seed so you can compare your program.

4



2.5 Programs

It is your task to implement the algorithms outlined in this document, and to be compatible with the reference
implementations. Do not make up a different approach to tackle the problem. If you do, you will fail the
project. The choice of algorithm is fixed, as are several of the parameters that make it possible for your
encoded files to be decoded by our decoder, and our encoded files to be decoded by your decoder. That said,
you are free to choose the internal data structures you will use in the encoder and the decoder, and should
justify your choices in terms of practicality and efficiency.

You will write two executable console programs: encode and decode. encode will receive the
name of a file to encode, the block size, and optionally a random seed. encode will be called as follows:

$ encode <file> <block-size> [<seed>]

Where:

file is the name of the source file to be encoded.

block-size is an integer, the size of each encoded block, in bytes.

seed is an integer, the initial seed for the random number generator.

encode will process the file into blocks and then continually stream blocks to stdout. We describe the
format to stream these blocks in Sec. 2.6. encode must be able to handle files whose size is not a multiple
of the block size.

decode will receive the name of an encoded file, which will have all of the necessary information
to decode it. decode will receive an optional drop rate, and will receive a stream of blocks on stdin.
For any given block, it will drop the block (that is, neglect to process the block and simply move on to
reading the next block) with probability given by the drop rate. Once enough blocks have been received to
successfully reconstruct the original file, it will write this file to stdout. It will be invoked as follows:

$ decode [<drop-rate>]

You don’t have to worry that the files used for testing won’t fit in memory, i.e., you may assume that the
decoder, for example, can hold the contents of the encoded and decoded blocks in memory. With that said,
you should make sure that you can decode at least a 10MiB file.

The reference implementations can be found in /course/cs168/pub/lt.

2.6 Data Format

The remaining aspect that we need to specify is the wire format for the blocks. The data in the blocks are to
be written verbatim, and the fields in the block header are to be written in network byte order.

The block format is simple: there is a header which specifies the file size and the block size (in case
this is the first block received by the encoder - remember, the encoder doesn’t know ahead of time anything
about the file it’s receiving). It also specifies the seed for the random number generator so that the decoder
can reconstruct the list of blocks that this block corresponds to. The data directly follows the header. The
format is as follows:

Block:
uint32_t fileSize;
uint32_t blockSize;
uint32_t blockSeed;
char data[blockSize];

5



Note that fileSize may not necessarily be a multiple of blockSize. Since all blocks are the same
size, this means that the final block may extend beyond the end of the file. In this case, it doesn’t matter
what data is stored in this part of the block, but it is vitally important that it be constant - if the data changes
over time, it invalidates the decoding scheme (since the data in the final block may be used to XOR with
other blocks). Given that the decoder knows the file size from the block header, it is possible for the decoder
to know where the actual file ends even if it does not end on a block boundary. Though it would technically
be possible to decode with a scheme that allows for arbitrarily many junk blocks, it would be wasteful, and
so we require that, if the file size is not a multiple of the block size, only the final block contain junk data,
and it is a multiple, there is no junk data (and thus there are no extra blocks).

3 Handin

3.1 What to Hand In

Hand in your project by typing

$ cs168_handin lt

from inside the directory where your work is located. To reduce clutter, the handin script removes .o files
and binary executable files, and runs make clean before handing in your assignment. You can handin
more than once - the new handin will replace the older one. We should be able to rebuild your programs by
running make.

4 Grading

4.1 Program - 90%

Most of your grade will be based on the correctness, performance, and style of your implementation. Specif-
ically:

1. Correctness - Your encoder and decoder must behave correctly. Given any combination of the TA
binaries and your binaries (ie, our encoder and your decoder, your encoder and our decoder, or your
encoder and your decoder), you must be able to correctly send and receive a file - the output must
identically reproduce the input. Additionally, given the same seed, your encoder should produce
exactly the same stream of blocks as our encoder. Given the same stream of blocks, your decoder
should decode in exactly the same number of blocks as our decoder.

2. Performance - Your programs must be reasonably performant. It must be possible to transfer a 10
MiB file between your binaries in a few seconds on a department machine (given a reasonable block
size).

3. Style - Your program must be reasonably designed, and your code must be clean and readable.

4.2 README - 10%

Please include a README file with your program. Describe your algorithms for encoding and decoding,
and justify these design decisions. List any implementation details which you found difficult to get correct,
and describe how you accomplished this. Describe briefly the performance of your encoder and decoder.
Would it be possible to improve this performance? If so, what would be easy or difficult about this change?
List any known bugs, and any ideas about potential fixes.

6



Good luck and have fun!

References

[1] J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution
of bulk data. In ACM SIGCOMM Computer Communication Review, volume 28, pages 56–67. ACM,
1998.

[2] D.J.C. MacKay. Information theory, inference, and learning algorithms. Cambridge Univ Pr, 2003.

[3] S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Commun. ACM,
31:1192–1201, October 1988.

7



A Pseudo-random sequence

Table 1 shows a list of 96 numbers generated using the random number generator from Sec. 2.3, starting
with seed 2067261. Your implementation should generate the exact same sequence given this seed.

384717275 2017463455 888985702 1138961335 2001411634 1688969677 1074515293
1188541828 2077102449 366694711 1907424534 448260522 541959578 1236480519
328830814 1184067167 2033402667 343865911 475872100 753283272 1015853439
953755623 952814553 168636592 1744271351 669331060 927782434 360607371
529232563 2081904114 1611383427 604985272 1799881606 1155500400 800602979

1749219598 82656156 1927577930 2011454515 828462531 1833275016 1905310403
1423282804 293742895 2019415459 1484062225 1758739317 1166783511 1457288620
598842305 1634250293 528829321 1747066761 407146696 1031620330 1807404079
884168938 1787987373 965105540 584824989 120937804 1082141766 517654719
766608236 1630224099 1580063467 343911067 1234808992 152763936 1260514187
535763254 174078107 858017135 341298340 272379243 1590285344 344306046

1430770104 1578742469 1764217798 901816857 2043818720 1460293275 1705955009
931665166 1193174685 484635109 2004287539 632181131 1466667008 1455103190
375542294 284896725 1518207912 119683330 1473033718 1086215810 270635523

Table 1: Sequence of 98 pseudo-random numbers generated by the algorithm described in Sec. 2.3 with
initial seed of 2067261. Your implementation should generate the exact same sequence given the same seed.
(The sequence follows the rows in the table).

8



B Degree distribution and source block sequence

Table 2 shows a sample of degree and list of sources for a sequence of encoded blocks. You should be able
to reproduce this list using your implementation, following Sec. 2.4.

Block seed d Source Blocks
166362120 1 98
634813345 2 400 62
177020911 2 49 385

1055302029 2 421 541
1364977754 12 336 109 412 410 463 231 319 564 417 305 313 461
1692838451 8 444 522 416 49 9 199 239 182
915510748 2 370 167

1536644533 2 458 555
980758720 8 236 557 326 25 418 154 230 346

1049939729 2 84 195
464738808 2 138 177

1622156932 4 109 43 446 250
667094411 33 201 291 424 197 401 108 38 85 382 401* 53 430 102 117 454 360 29 363 271 230

63 448 186 206 257 80 10 99 190 224 474 338 351 376
526649093 7 262 239 265 91 527 268 550
877036565 1 271

1891461182 2 19 566
1813567941 4 553 78 160 152
1687591223 6 240 385 542 394 465 539
886846905 9 380 345 290 31 273 79 416 108 288

1912570498 3 129 204 230
473728667 3 326 461 451

1321711281 2 439 181
706125047 2 127 144

Table 2: Given the seed on the left, the process outlined in Sec. 2.4 generates the degree d and the list
of integers on the right. The parameters are K = 571, c = 0.1, δ = 0.5, and the initial random seed
s = 166362120. Note that we did not omit duplicate entries in the list (those marked with a *, so you
can know the total number of calls to the random number generator), but you must skip these entries when
creating the list on your programs.

9


	Introduction
	Your Task
	Algorithm
	Robust Soliton Distribution
	Pseudo-Random Number Generation
	Encoding the List of Blocks
	Programs
	Data Format

	Handin
	What to Hand In

	Grading
	Program - 90%
	README - 10%

	Pseudo-random sequence
	Degree distribution and source block sequence

