CSCI-1680
Layering and Encapsulation

John Jannotti

Based partly on lecture notes by David Mazieres, Phil Levis, Rodrigo Fonseca

Administrivia

 Homework 0:
— Sign and hand in Collaboration Policy
— Sign up for Piazza
— Send us your github account

« Signup for Snowcast milestone
— Thursday from 8pm to 10pm (tentative)
— See Piazza for details

Today

* Review
— Switching, Multiplexing

Layering and Encapsulation
Intro to IP, TCP, UDP

Extra material: sockets primer

A Taxonomy of networks

A hybrid of circuits and packets;

headers include a “circuit
identifier” established during a
/\ setup phase

.

Circuit Switching

« Guaranteed allocation
— Time division / Frequency division multiplexing

 Low space overhead
 Easy to reason about

 Failures: must re-establish connection
— For any failures along path

* Overload: all or nothing
— No graceful degradation

 Waste: allocate for peak, waste for less than
peak

« Set up time

Packet Switching

 Break information in small chunks:
packets

« Each packet forwarded independently
— Must add metadata to each packet

* Allows statistical multiplexing
— High utilization
— Very flexible
— Fairness not automatic
— Highly variable queueing delays
— Different paths for each packet (why is this bad?)

Traceroute map of the Internet, ~5 million edges, circa 2003. opte.org

Managing Complexity

Very large number of computers

Incredible variety of technologies
— Each with very different constraints

No single administrative entity

Evolving demands, protocols, applications
— Each with very different requirements!

How do we make sense of all this?

Layering

Application
TCP UDP
IP

Link Layer

« Separation of concerns
— Break problem into separate parts
— Solve each one independently

— Tie together through common interfaces:
abstraction

— Encapsulate data from the layer above inside
data from the layer below

[[— Allow independent evolution

Analogy to Delivering a Letter

Layers

Application — what the users sees, e.g.,
HTTP

Presentation — crypto, conversion between
representations

Session — can tie together multiple streams
(e.g., audio & video)

Transport — demultiplexes, provides
reliability, flow and congestion control

Network — sends packets, using routing

Data Link — sends frames, handles media
access

Physical — sends individual bits

OSI Reference Model

End host End host

Application Protocol

Transport Protocol

One or more nodes
within the network

Layers, Services, Protocols

_///\

Layer N+1

Layer N

Layer N-1

Service: abstraction provided to layer above
API: concrete way of using the service

Protocol: rules for communication
within same layer

Layer N uses the services provided by N-1 to
implement its protocol and provide its own services

Layers, Services, Protocols

Application

Transport

Network

Link

Physical

Service: user-facing application.
Application-defined messages

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: move frames to other node across link.
May add reliability, medium access control

Service: move bits to other node across link

Protocols

 What do you need to communicate?
— Definition of message formats
— Definition of the semantics of messages
— Definition of valid sequences of messages

* Including valid timings

* Also, who do you talk to? ...

Addressing

Each node typically has a unique* name

— When that name also tells you how to get to the node, it
Is called an address

Each layer can have its own naming/addressing

Routing is the process of finding a path to the
destination

— In packet switched networks, each packet must have a
destination address

— For circuit switched, use address to set up circuit

Special addresses can exist for broadcast/
multicast/anycast

* within the relevant scope

Challenge

 Decide on how to factor the problem
— What services at which layer?
— What to leave out?
— More on this later (End-to-end principle)

 For example:

— |P offers pretty crappy service, even on top of
reliable links... why?

— TCP: offers reliable, in-order, no-duplicates
service. Why would you want UDP?

IP as the Narrow Waist

— y- Ay Oy 4
HTTP TFTP

&4 M
e

IP

NET, NET, ~ NET,

. g‘ngrn I:,applications protocols on top of UDP

* |IP works over many types of networks
* This is the “Hourglass” architecture of the

Internet.

— If every network supports IP, applications run over
many different networks (e.g., cellular network)

Network Layer: Internet Protocol (IP)

 Used by most computer networks today

— Runs over a variety of physical networks, can connect
Ethernet, wireless, modem lines, etc.

 Every host has a unique 4-byte IP address
(IPv4)
— E.g., www.cs.brown.edu =128.148.32.110
— The network knows how to route a packet to any address

* Need more to build something like the Web
— Need naming (DNS)
— Interface for browser and server software (sockets)

— Need demultiplexing within a host: which packets are for
web browser, Skype, or the mail program? (ports)

Inter-process Communication

« Talking from host to host is great, but we want
abstraction of inter-process communication

« Solution: encapsulate another protocol within IP

Transport: UDP and TCP

« UDP and TCP most popular protocols on IP
— Both use 16-bit port number & 32-bit IP address
— Applications bind a port & receive traffic on that port

 UDP - User (unreliable) Datagram Protocol
— Exposes packet-switched nature of Internet
— Adds multiplexing on top of IP
— Sent packets may be dropped, reordered, even
duplicated (but there is corruption protection)
« TCP - Transmission Control Protocol

— Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

— Handles congestion and flow control

Uses of TCP

 Most applications use TCP
— Easier to program (reliability is convenient)
— Automatically avoids congestion (don't need to
worry about overloading the network)
« Servers typically listen on “well-known”
ports:
— SSH: 22
— SMTP (email): 25
— Finger: 79
— HTTP (web): 80

Transport: UDP and TCP

« UDP and TCP most popular protocols on IP
— Both use 16-bit port number & 32-bit IP address
— Applications bind a port & receive traffic on that port

 UDP - User (unreliable) Datagram Protocol
— Exposes packet-switched nature of Internet
— Adds multiplexing on top of IP
— Packets may be dropped, reordered, even duplicated
(but there is corruption protection)
« TCP - Transmission Control Protocol

— Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

— Handles congestion and flow control

Internet Layering

Application
TCP | UDP

1P
Network

 Strict layering not required

— TCP/UDP “cheat” to detect certain errors in IP-level
information like address

— Overall, allows evolution, experimentation

Using TCP/IP

 How can applications use the network?

« Sockets API.

— Originally from BSD, widely implemented (*BSD,
Linux, Mac OS X, Windows, ...)

— Higher-level APls build on them
« After basic setup, use much like files

Sockets: Communication Between
Machines
 Network sockets are file descriptors too

 Datagram sockets: unreliable message delivery
— With IP, gives you UDP
— Send atomic messages, which may be reordered or lost
— Special system calls to read/write: send/recv

« Stream sockets: bi-directional pipes
— With IP, gives you TCP
— Bytes written on one end read on another

— read() may not return full amount requested. Check return
value and read() again! (But returning zero bytes = eof)

System calls for using TCP

Client Server
socket — make socket
bind — assign address, port
listen — listen for clients

socket — make socket
bind* — assign address
connect — connect to listening socket
accept — accept connection

« client bind is optional, connect can choose address &
port.

Socket Naming

* Recall how TCP & UDP name communication
endpoints
— |P address (128.148.32.110) specifies host (netif)
— 16-bit port number demultiplexes within host

— Well-known services listen on standard ports (e.qg.
ssh: 22, http: 80, mail: 25, see /etc/services for list)

— Clients connect from arbitrary ports to well known
ports
* A connection is named by 5 components
— Protocol, local IP, local port, remote IP, remote port
— TCP requires connected sockets, but not UDP

Dealing with Address Types

« All values in network byte order (Big
Endian)

— htonl(), htons(): host to network, 32 and 16 bits
— ntohl(), ntohs(): network to host, 32 and 16 bits
— Always convert! On some machines, it's a no-op.

* All address types begin with family
— sa_family INn sockaddr tells you actual type
 Not all addresses are the same size

— e.g., struct sockaddr_ iné IS typically 28 bytes,
yet generic struct sockaddr IS only 16 bytes

— Most calls also take the socketaddr length
— New sockaddr storage IS “big enough”

Client Skeleton (IPv4)

struct sockaddr_in {
short sin_family; /* = AF_INET x/
u_short sin_port; /* = htons (PORT) */
struct 1in_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)
write (1, buf, n);

Server Skeleton (IPv4)

int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (5;) 1
socklen_t len = sizeof (sin);
int cfd = accept (s, (struct sockaddr *) &sin, &len);
/* cfd is new connection; you never read/write s */
do_something_with (cfd);
close (cfd);

Using UDP

« Call socket with SOCK_DGRAM, bind as before
* New calls for sending/receiving individual packets

— sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);

— recvfrom(int s, void *buf, int len, int flags, struct
sockaddr *from, socklen t *fromlen);

— Must send/get peer address with each packet
Example: udpecho.c

 Can use UDP in connected mode (Why?)
— connect assigns remote address

— send/recv syscalls, like sendto/recvfrom w/o last two
arguments

Uses of UDP Connected Sockets

 Kernel demultiplexes packets based on port
— Can have different processes getting UDP packets
from different peers
 Feedback based on ICMP messages (future
lecture)

— Say no process has bound UDP port you sent packet
to

— Server sends port unreachable message, but you will
only receive it when using connected socket

Serving Multiple Clients

* A server may block when talking to a client

— Read or write of a socket connected to a slow client
can block

— Server may be busy with CPU
— Server might be blocked waiting for disk 1/0

« Concurrency through multiple processes
— Accept, fork, close in parent; child services request

« Advantages of one process per client
— Don’t block on slow clients
— May use multiple cores
— Can keep disk queues full for disk-heavy workloads

Threads

 One process per client has
disadvantages:

— High overhead — fork + exit ~100usec
— Hard to share state across clients
— Maximum number of processes limited

« Can use threads for concurrency

— Data races and deadlocks make programming
tricky

— Must allocate one stack per request
— Many have heavy thread-switch overhead

Rough equivalents to fork(), waitpid(),
exit(), kill(), plus locking primitives.

Non-blocking I/O
fcntl sets O_NONBLOCK flag on descriptor

int n;
if ((n = fcntl(s, F_GETFL)) >= 0)
fcntl(s, F _SETFL, n|O NONBLOCK);

Non-blocking semantics of system calls:

— read immediately returns -1 with errno EAGAIN if no
data

— write may not write all data, or may return EAGAIN

— connect may fail with EINPROGRESS (or may
succeed, or may fail with a real error like
ECONNREFUSED)

— accept may fail with EAGAIN or EWOULDBLOCK if no
connections present to be accepted

Use select() to know when to act.

struct timeval {
long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset) ;

« Entire program runs in an event loop
« poll() is similar, epoll() is “better” in some ways.

Event-driven servers

* Quite different from processes/threads
— Race conditions, deadlocks rare
— Often more efficient

« But...

— Unusual programming model.

— Sometimes difficult to avoid blocking. (You must
know your libraries are also asynchronous.)

— Scaling to more CPUs is more complex.

Coming Up

* Next class: Physical Layer
« Same day: Snowcast milestones

