
CSCI-1680
WWW

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 Sco2	
 Shenker	
 and	
 Rodrigo	
 Fonseca	

John Jannotti

Precursors

•  1945, Vannevar Bush, Memex:
–  “a device in which an individual stores all his books,

records, and communications, and which is
mechanized so that it may be consulted with
exceeding speed and flexibility”

•  Precursors to hypertext
–  “The human mind [...] operates by association.

With one item in its grasp, it snaps instantly to
the next that is suggested by the association of
thoughts, in accordance with some intricate web
of trails carried by the cells of the brain”

•  His essay, “As we may think”, is worth
reading!

Tim Berners-Lee

•  Physicist at CERN, trying to solve real
problem
–  Distributed access to data

•  WWW: distributed database of pages linked
through the Hypertext Transfer Protocol
–  First HTTP implementation: 1990
–  HTTP/0.9 – 1991

•  Simple GET commant
–  HTTP/1.0 – 1992

•  Client/server information, simple caching
–  HTTP/1.1 – 1996

•  Extensive caching support
•  Host identification
•  Pipelined, persistent connections, …

Why so successful?

•  Ability to self publish
–  Like youtube for video

•  But…
–  Mechanism is easy
–  Independent, open
–  Free

•  Current debate
–  Is it easy enough? Why is facebook so popular,

even though it is not open?

Components

•  Content
–  Objects (may be static or dynamically generated)

•  Clients
–  Send requests / Receive responses

•  Servers
–  Receive requests / Send responses
–  Store or generate content

•  Proxies
–  Placed between clients and servers
–  Provide extra functions

•  Caching, anonymization, logging, transcoding, filtering
access

–  Explicit or transparent

Ingredients

•  HTTP
–  Hypertext Transfer Protocol

•  HTML
–  Language for description of content

•  Names (mostly URLs)
–  Won’t talk about URIs, URNs

URLs

protocol://[name@]hostname[:port]/directory/
resource?k1=v1&k2=v2#tag

•  URLs are a type of URI
•  Name is for possible client identification
•  Hostname is FQDN or IP address
•  Port defaults to protocol default (e.g., 80)
•  Directory is a path to the resource
•  Resource is the name of the object
•  ?parameters are passed to the server for

execution
•  #tag allows jumps to named tags within

document (not even sent to server)

HTTP

•  Important properties
–  Client-server protocol
–  Protocol (but not data) in ASCII
–  Stateless
–  Extensible (header fields)

•  Server typically listens on port 80
•  Server sends response, may close

connection (client may ask it to say open)
•  Currently version 1.1 is most common.
•  There is an HTTP/2 though.

Steps in HTTP(1.0) Request

•  Open TCP connection to server
•  Send request
•  Receive response
•  TCP connection terminates

–  How many RTTs for a single request?

•  You may also need to do a DNS lookup
first!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...

Connected to www.cs.brown.edu.

Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bc0"

Accept-Ranges: bytes
Content-Length: 9068

Vary: Accept-Encoding
Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en”>

...

HTTP Request

•  Method:
–  GET: current value of resource, run program
–  HEAD: return metadata associated with a resource
–  POST: update a resource, provide input for a program

•  Headers: useful info for proxies or the server
–  E.g., desired language, compression

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto ...

Accept: text/xml,application/xm ...

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

(empty line)

Firefox	
 extension	
 LiveHTTPHeaders	
 is	
 a	
 cool	
 way	
 to	
 see	
 this	

HTTP Response

•  Status Codes:
–  1xx: Information e.g, 100 Continue
–  2xx: Success e.g., 200 OK
–  3xx: Redirection e.g., 302 Found (elsewhere)
–  4xx: Client Error e.g., 404 Not Found
–  5xx: Server Error e.g, 503 Service Unavailable

HTTP Response Format
version status code phrase ��

header field name value ��

header field name value ��

��

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

HTTP is Stateless

•  Each request/response treated
independently

•  Servers not required to maintain state
•  This is good!

–  Improves server scalability
•  This is also bad…

–  Some applications need persistent state
–  Need to uniquely identify user to customize

content
–  E.g., shopping cart, web-mail, usage tracking,

(most sites today!)

HTTP Cookies
•  Client-side state maintenance

–  Client stores small state on behalf of server
–  Sends request in future requests to the server
–  Cookie value is meaningful to the server (e.g., session id)

•  Can provide authentication

Request	

Response	

Set-­‐Cookie:	
 XYZ	

Request	

Cookie:	
 XYZ	

Anatomy of a Web Page

•  HTML content
•  A number of additional resources

–  Images
–  Scripts
–  Frames

•  Browser makes one HTTP request for
each object
–  Course web page: 14 objects
–  My facebook page this morning: 100 objects

What about AJAX?

•  Asynchronous Javascript and XML
•  Based on XMLHttpRequest object in

browsers, which allow code in the page
to:
–  Issue a new, non-blocking request to the server,

without leaving the current page
–  Receive the content
–  Process the content

•  Used to add interactivity to web pages
–  XML not always used, HTML fragments, JSON,

and plain text also popular

The Web is Dead? (Wired, Aug 2010)

h2p://www.wired.com/magazine/2010/08/ff_webrip/all/1	

Consumer Internet Traffic, 2013–2018

2013 2014 2015 2016 2017 2018
CAGR

2013–2018
By Network (PB per Month)
Fixed 27,882 33,782 40,640 48,861 58,703 70,070 20%
Mobile 1,189 2,102 3,563 5,774 8,968 13,228 62%
By Subsegment (PB per Month)
Internet video 17,455 22,600 29,210 37,783 48,900 62,972 29%
Web, email, and data 5,505 6,706 8,150 9,913 11,827 13,430 20%
File sharing 6,085 6,548 6,803 6,875 6,856 6,784 2%
Online gaming 26 30 41 64 88 113 34%
Source: Cisco VNI, 2014

The Web is Dead? (Wired, Aug 2010)

•  You wake up and check your email on your
bedside iPad — that’s one app. During
breakfast you browse Facebook, Twitter, and
The New York Times — three more apps. On
the way to the office, you listen to a podcast on
your smartphone. Another app. At work, you
scroll through RSS feeds in a reader and have
Skype and IM conversations. More apps. At the
end of the day, you come home, make dinner
while listening to Pandora, play some games
on Xbox Live, and watch a movie on Netflix’s
streaming service. You’ve spent the day on the
Internet — but not on the Web. And you are not
alone.

HTTP Performance

•  What matters for performance?
•  Depends on type of request

–  Lots of small requests (objects in a page)
–  Some big requests (large download or video)

Small Requests

•  Latency matters
•  RTT dominates
•  Two major causes:

–  Opening a TCP connection
–  Actually sending the request and receiving

response
–  And a third one: DNS lookup!

How can we reduce the number of
connection setups?

•  Keep the connection open and request
all objects serially
–  Works for all objects coming from the same

server
–  Which also means you don’t have to “open” the

window each time
•  Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto ...

Accept: text/xml,application/xm ...

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Small Requests (cont)

•  Second problem is that requests are
serialized
–  Similar to stop-and-wait protocols!

•  Two solutions
–  Pipelined requests (similar to sliding windows)
–  Parallel Connections

•  HTTP standard says no more than 2 concurrent
connections per host name

•  Most browsers use more (up to 8 per host, ~35 total)
–  See http://www.browserscope.org/

–  How are these two approaches different?

Larger Objects

•  Problem is throughput in bottleneck link
•  Solution: HTTP Proxy Caching

–  Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

•  Server sets options
–  Expires header
–  No-Cache header

•  Client can do a conditional request:
–  Header option: if-modified-since
–  Server can reply with 304 NOT MODIFIED

•  More when we talk about Content
Distribution

Next Class

•  Global data distribution
–  CDN and P2P

•  How to create your own application layer
protocol!
–  Data / RPC

