
CSCI-1680
Web Performance, Content

Distribution
P2P

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 Sco2	
 Shenker	
 and	
 Rodrigo	
 Fonseca	

John Jannotti

Last time

•  HTTP and the WWW
•  Today: HTTP Performance

–  Persistent Connections, Pipeline, Multiple
Connections

–  Caching
–  Content Distribution Networks

HTTP Performance

•  What matters for performance?
•  Depends on type of request

–  Lots of small requests (objects in a page)
–  Some big requests (large download or video)

Small Requests

•  Latency matters
•  RTT dominates
•  Two major causes:

–  Opening a TCP connection
–  Actually sending the request and receiving

response
–  And a third one: DNS lookup!

How can we reduce the number of
connection setups?

•  Keep the connection open and request
all objects serially
–  Works for all objects coming from the same

server
–  Which also means you don’t have to “open” the

window each time
•  Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto ...

Accept: text/xml,application/xm ...

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Small Requests (cont)

•  Second problem is that requests are
serialized
–  Similar to stop-and-wait protocols!

•  Two solutions
–  Pipelined requests (similar to sliding windows)
–  Parallel Connections

•  HTTP standard says no more than 2 concurrent
connections per host name

•  Most browsers use more (up to 8 per host, ~35 total)
–  See http://www.browserscope.org/

–  How are these two approaches different?

Larger Objects

•  Problem is throughput in bottleneck link
•  Solution: HTTP Proxy Caching

–  Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

•  Server sets options
–  Expires header
–  No-Cache header

•  Client can do a conditional request:
–  Header option: if-modified-since
–  Server can reply with 304 NOT MODIFIED

Caching
•  Where to cache content?

–  Client (browser): avoid extra network transfers
–  Server: reduce load on the server
–  Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Caching

•  Why caching works?
–  Locality of reference:

•  Users tend to request the same object in succession
•  Some objects are popular: requested by many users

Server

Clients

Backbone ISP

ISP-1 ISP-2

How well does caching work?

•  Very well, up to a point
–  Large overlap in requested objects
–  Objects with one access place upper bound on hit

ratio
–  Dynamic objects not cacheable*

•  Example: Wikipedia
–  About 400 servers, 100 are HTTP Caches (Squid)
–  85% Hit ratio for text, 98% for media

*	
 But	
 can	
 cache	
 por:ons	
 and	
 run	
 special	
 code	
 on	
 edges	
 to	
 reconstruct	

HTTP Cache Control
Cache-Control = "Cache-Control" ":" 1#cache-directive
cache-directive = cache-request-directive
| cache-response-directive
cache-request-directive =
 "no-cache" ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "min-fresh" "=" delta-seconds ; Section 14.9.3
| "no-transform" ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6

cache-response-directive =
 "public" ; Section 14.9.1
| "private" ["=" <"> 1#field-name <">] ; Section 14.9.1
| "no-cache" ["=" <"> 1#field-name <">]; Section 14.9.1
| "no-store" ; Section 14.9.2
| "no-transform" ; Section 14.9.5
| "must-revalidate" ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4
| "max-age" "=" delta-seconds ; Section 14.9.3
| "s-maxage" "=" delta-seconds ; Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["=" (token | quoted-string)]

Reverse Proxies
•  Close to the server

–  Also called Accelerators
–  Only work for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward Proxies
•  Typically done by ISPs or Enterprises

–  Reduce network traffic and decrease latency
–  May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Content Distribution Networks

•  Integrate forward and reverse caching
–  One network generally administered by one

entity
–  E.g. Akamai

•  Provide document caching
–  Pull: result from client requests
–  Push: expectation of high access rates to some

objects
•  Can also do some processing

–  Deploy code to handle some dynamic requests
–  Can do other things, such as transcoding

Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How Akamai works

•  Akamai has cache servers deployed close to clients
–  Co-located with many ISPs

•  Challenge: make same domain name resolve to a proxy close to
the client

•  Lots of DNS tricks. BestBuy is a customer
–  Delegate name resolution to Akamai (via a CNAME)

•  From Brown:
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

–  Ping time: 2.53ms
•  From Berkeley, CA:
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

–  Ping time: 3.20ms

DNS Resolution
dig www.bestbuy.com
;; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

;; AUTHORITY SECTION:
b.akamai.net. 1101IN NS n1b.akamai.net.
b.akamai.net. 1101IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:
n0b.akamai.net. 1267IN A 24.143.194.45

n1b.akamai.net. 2196IN A 198.7.236.236

•  n1b.akamai.net finds an edge server
close to the client’s local resolver
•  Uses knowledge of network: BGP feeds,

traceroutes. Their secret sauce…

What about the content?
•  Say you are Akamai

–  Clusters of machines close to clients
–  Caching data from many customers
–  Proxy fetches data from origin server first time it

sees a URL
•  Choose cluster based on client network

location
•  How to choose server within a cluster?
•  If you choose based on client

–  Low hit rate: N servers in cluster means N cache
misses per URL

Straw man: modulo hashing
•  Say you have N servers
•  Map requests to proxies as follows:

–  Number servers 0 to N-1
–  Compute hash of URL: h = hash (URL)
–  Redirect client to server #p = h mod N

•  Keep track of load in each proxy
–  If load on proxy #p is too high, try again with a

different hash function (or “salt”)
•  Problem: most caches will be useless if

you add or remove proxies, change value
of N

Consistent Hashing [Karger et al., 99]

•  URLs and Caches are mapped to points on a circle
using a hash function

•  A URL is assigned to the closest cache clockwise
•  Minimizes data movement on change!

–  When a cache is added, only the items in the preceding
segment are moved

–  When a cache is removed, only the next cache is affected

A	

B	

C	

0	

1	

2	

3	

4	

Object	
 Cache	

1	
 B	

2	
 C	

3	
 C	

4	
 A	

Consistent Hashing [Karger et al., 99]

•  Minimizes data movement
–  If 100 caches, add/remove a proxy invalidates ~1% of objects
–  When proxy overloaded, spill to successor

•  Can also handle servers with different capacities.
How?
–  Give bigger proxies more random points on the ring

A	

B	

C	

0	

1	

2	

3	

4	

Object	
 Cache	

1	
 B	

2	
 C	

3	
 C	

4	
 A	

Summary

•  HTTP Caching can greatly help
performance
–  Client, ISP, and Server-side caching

•  CDNs make it more effective
–  Incentives, push/pull, well provisioned
–  DNS and Anycast tricks for finding close servers
–  Consistent Hashing for smartly distributing load

Peer-to-Peer Systems

•  How did it start?
–  A killer application: file distribution
–  Free music over the Internet! (not exactly legal…)

•  Key idea: share storage, content, and
bandwidth of individual users
–  Lots of them

•  Big challenge: coordinate all of these users
–  In a scalable way (not NxN!)
–  With changing population (aka churn)
–  With no central administration
–  With little trust
–  With large heterogeneity (content, storage,

bandwidth,…)

3 Key Requirements

•  P2P Systems do three things:
•  Help users determine what they want

–  Some form of search
–  P2P version of Google

•  Locate that content
–  Which node(s) hold the content?
–  P2P version of DNS (map name to location)

•  Download the content
–  Should be efficient
–  P2P form of Akamai

Napster (1999)

xyz.mp3	

Napster

xyz.mp3	
 ?	

xyz.mp3	

Napster

xyz.mp3	
 ?	

xyz.mp3	

Napster

xyz.mp3	
 ?	

xyz.mp3	

Napster

•  Search & Location: central server
•  Download: contact a peer, transfer

directly
•  Advantages:

–  Simple, advanced search possible

•  Disadvantages:
–  Single point of failure (technical and legal!)
–  The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3	
 ?	

xyz.mp3	

An	
 “unstructured”	
 overlay	
 network	

•  Search & Location: flooding (with TTL)
•  Download: direct

Gnutella: Flooding on Overlays

xyz.mp3	
 ?	

xyz.mp3	

Flooding	

Gnutella: Flooding on Overlays

xyz.mp3	
 ?	

xyz.mp3	

Flooding	

Gnutella: Flooding on Overlays

xyz.mp3	

KaZaA: Flooding w/ Super Peers (2001)

•  Well connected nodes can be installed
(KaZaA) or self-promoted (Gnutella)

Say you want to make calls among
peers

•  You need to find who to call
–  Centralized server for authentication, billing

•  You need to find where they are
–  Can use central server, or a decentralized

search, such as in KaZaA
•  You need to call them

–  What if both of you are behind NATs? (only allow
outgoing connections)

–  You could use another peer as a relay…

Skype

•  Built by the founders of KaZaA!
•  Uses Superpeers for registering

presence, searching for where you are
•  Uses regular nodes, outside of NATs, as

decentralized relays
–  This is their killer feature

•  One morning, from Rodrigo’s computer:
–  29,565,560 people online

Lessons and Limitations

•  Client-server performs well
–  But not always feasible

•  Things that flood-based systems do well
–  Organic scaling
–  Decentralization of visibility and liability
–  Finding popular stuff
–  Fancy local queries

•  Things that flood-based systems do poorly
–  Finding unpopular stuff
–  Fancy distributed queries
–  Vulnerabilities: data poisoning, tracking, etc.
–  Guarantees about anything (answer quality, privacy,

etc.)

BitTorrent (2001)

•  One big problem with the previous
approaches
–  Asymmetric bandwidth

•  BitTorrent (original design)
–  Search: independent search engines (e.g.

PirateBay, isoHunt)
•  Maps keywords -> .torrent file

–  Location: centralized tracker node per file
–  Download: chunked

•  File split into many pieces
•  Can download from many peers

BitTorrent

•  How does it work?
–  Split files into large pieces (256KB ~ 1MB)
–  Split pieces into subpieces
–  Get peers from tracker, exchange info on pieces

•  Three-phases in download
–  Start: get a piece as soon as possible (random)
–  Middle: spread pieces fast (rarest piece)
–  End: don’t get stuck (parallel downloads of last

pieces)

BitTorrent

•  Self-scaling: incentivize sharing
–  If people upload as much as they download, system

scales with number of users (no free-loading)
•  Uses tit-for-tat: only upload to who gives

you data
–  Choke most of your peers (don’t upload to them)
–  Order peers by download rate, choke all but P best
–  Occasionally unchoke a random peer (might become

a nice uploader)
•  Optional reading:

Do Incentives Build Robustness in BitTorrent?
Piatek et al, NSDI’07

Structured Overlays: DHTs

•  Academia came (a little later)…
•  Goal: Solve efficient decentralized

location
–  Remember the second key challenge?
–  Given ID, map to host

•  Remember the challenges?
–  Scale to millions of nodes
–  Churn
–  Heterogeneity
–  Trust (or lack thereof)

•  Selfish and malicious users

DHTs

•  IDs from a flat namespace
–  Contrast with hierarchical IP, DNS

•  Metaphor: hash table, but distributed
•  Interface

–  Get(key)
–  Put(key, value)

•  How?
–  Every node supports a single operation:

 Given a key, route messages to node holding
key

Identifier to Node Mapping Example

•  Node 8 maps [5,8]
•  Node 15 maps [9,15]
•  Node 20 maps [16, 20]
•  …
•  Node 4 maps [59, 4]

•  Each node maintains a
pointer to its
successor

4	

20	

32	
 35	

8	

15	

44	

58	

Example	
 from	
 Ion	
 Stoica	

Remember Consistent Hashing?

•  But each node only
knows about a small
number of other
nodes (so far only
their successors)

4	

20	

32	
 35	

8	

15	

44	

58	

Lookup

•  Each node maintains its
successor

•  Route packet (ID, data)
to the node responsible
for ID using successor
pointers

4	

20	

32	
 35	

8	

15	

44	

58	

lookup(37)	

node=44	

Optional: DHT Maintenance

Stabilization Procedure

•  Periodic operations performed by each node
N to maintain the ring:

STABILIZE()	
 [N.successor	
 =	
 M]	

	
 N-­‐>M:	
 “What	
 is	
 your	
 predecessor?”	

	
 M-­‐>N:	
 “x	
 is	
 my	
 predecessor”	

	
 if	
 x	
 between	
 (N,M),	
 N.successor	
 =	
 x	

	
 	
 N-­‐>N.successor:	
 NOTIFY()	

NOTIFY()	

N-­‐>N.successor:	
 “I	
 think	
 you	
 are	
 my	
 successor”	

M:	
 upon	
 receiving	
 NOTIFY	
 from	
 N:	

If	
 (N	
 between	
 (M.predecessor,	
 M))	

	
 M.predecessor	
 =	
 N	

Joining Operation

4	

20	

32	

35	

8	

15	

44	

58	

50	

§  Node	
 with	
 id=50	
 joins	

the	
 ring	

§  Node	
 50	
 needs	
 to	

know	
 at	
 least	
 one	

node	
 already	
 in	
 the	

system	

-­‐  Assume	
 known	
 node	

	
 	
 	
 	
 	
 is	
 15 	
 	
 	
 	
 	

succ=4	

pred=44	

succ=nil	

pred=nil	

succ=58	

pred=35	

Joining Operation

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  Node	
 50:	
 send	
 join(50)	

to	
 node	
 15	
 	

§  Node	
 44:	
 returns	
 node	

58	
 	

§  Node	
 50	
 updates	
 its	

successor	
 to	
 58	
 join(50)	

succ=58	

succ=4	

pred=44	

succ=nil	

pred=nil	

succ=58	

pred=35	

58	

Joining Operation

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  Node	
 50:	
 send	

stabilize()	
 to	
 node	

58	

§  Node	
 58:	
 	

-­‐  Replies	
 with	
 44	

-­‐  50	
 determines	

it	
 is	
 the	
 right	

predecessor	

succ=58	

pred=nil	

succ=58	

pred=35	

stabilize():	

“What	
 is	
 your	
 predecessor?”	

succ=4	

pred=44	

Joining Operation

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  Node	
 50:	
 send	

no:fy()	
 to	
 node	

58	

§  Node	
 58:	
 	

-­‐  update	

predecessor	
 to	

50	
 	

succ=58	

pred=nil	

succ=58	

pred=35	

no:fy():	
 	

“I	
 think	
 you	
 are	
 my	
 successor”	

pred=50	

succ=4	

pred=44	

Joining Operation

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  Node	
 44	
 sends	
 a	
 stabilize	

message	
 to	
 its	
 successor,	
 node	

58	

§  Node	
 58	
 replies	
 with	
 50	

§  Node	
 44	
 updates	
 its	
 successor	

to	
 50	

succ=58	

stabilize():	
 	

“What	
 is	
 your	
 predecessor?”	

succ=50	

pred=50	

succ=4	

pred=nil	

succ=58	

pred=35	

Joining Operation

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  Node	
 44	
 sends	
 a	
 no:fy	

message	
 to	
 its	
 new	
 successor,	

node	
 50	

§  Node	
 50	
 sets	
 its	
 predecessor	
 to	

node	
 44	

succ=58	

succ=50	

no:fy()	

pred=44	

pred=50	

pred=35	

succ=4	

pred=nil	

Joining Operation (cont’d)

4	

20	

32	
 35	

8	

15	

44	

58	

50	

§  This	
 completes	
 the	
 joining	

opera:on!	

succ=58	

succ=50	

pred=44	

pred=50	

Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32	

45	
 80	

20	

112	

96	

Chord

•  There is a tradeoff between routing table
size and diameter (number of hops for
lookup) of the network

•  Chord achieves diameter O(log n) with
O(log n)-entry routing tables

Many other DHTs
•  CAN

–  Routing in n-dimensional space
•  Pastry/Tapestry/Bamboo

–  (Book describes Pastry)
–  Names are fixed bit strings
–  Topology: hypercube (plus a ring for fallback)

•  Kademlia
–  Similar to Pastry/Tapestry
–  But the ring is ordered by the XOR metric
–  Used by BitTorrent for distributed tracker

•  Viceroy
–  Emulated butterfly network

•  Koorde
–  DeBruijn Graph
–  Each node connects to 2n, 2n+1
–  Degree 2, diameter log(n)

•  …

Discussion

•  Query can be implemented
–  Iteratively: easier to debug
–  Recursively: easier to maintain timeout values

•  Robustness
–  Nodes can maintain (k>1) successors
–  Change notify() messages to take that into account

•  Performance
–  Routing in overlay can be worse than in the underlay
–  Solution: flexibility in neighbor selection

•  Tapestry handles this implicitly (multiple possible next
hops)

•  Chord can select any peer between [2n,2n+1) for finger,
choose the closest in latency to route through

Where are they now?

•  Many P2P networks shut down
–  Not for technical reasons!
–  Centralized systems work well (or better)

sometimes
•  But…

–  Vuze network: Kademlia DHT, millions of users
–  Skype uses a P2P network similar to KaZaA

Where are they now?

•  DHTs allow coordination of MANY nodes
–  Efficient flat namespace for routing and lookup
–  Robust, scalable, fault-tolerant

•  If you can do that
–  You can also coordinate co-located peers
–  Now dominant design style in datacenters

•  E.g., Amazon’s Dynamo storage system
–  DHT-style systems everywhere

•  Similar to Google’s philosophy
–  Design with failure as the common case
–  Recover from failure only at the highest layer
–  Use low cost components
–  Scale out, not up

