CSCI-1680
Security

John Jannotti

Based on lecture notes by Scott Shenker, Mike Freedman, and Rodrigo Fonseca

=

=]
\E|

Today’s Lecture

Classes of attacks

Basic security requirements

Simple cryptographic methods

Crypto toolkit (Hash, Digital Signature, ...)
DNSSec (in .pptx, won’t have time today)
Certificate Authorities

SSL/HTTPS

Basic Secure Communication Reqs

« Availability: Will the network deliver data?
— Infrastructure compromise, DDoS

« Authentication: Who is this actor?
— Spoofing, phishing
 Integrity: Do messages arrive in original form?
- Confidentiality: Can adversary read the data?
— Sniffing, man-in-the-middle
* Provenance: Who is responsible for this data?
— Forging responses, denying responsibility
— Not who sent the data, but who created it

Other Desirable Security Properties

Authorization: is actor allowed to do this
action?

— Access controls
Accountability/Attribution: who did this activity?
Audit/Forensics: what occurred in the past?

— A broader notion of accountability/attribution
Appropriate use: is action consistent with
policy?

— E.g., no spam; no games during business hours; etc.

Freedom from traffic analysis: can someone tell
when | am sending and to whom?

Anonymity: can someone tell | sent this packet?

=

=]
\E|

Internet’s Design: Insecure

Designed for simplicity in a naive era
“On by default” design

Readily available zombie machines
Attacks look like normal traffic

Internet’s federated operation obstructs
cooperation for diagnosis/mitigation

Eavesdropping - Message Interception
(Attack on Confidentiality)

« Unauthorized access to information
 Packet sniffers and wiretappers
« lllicit copying of files and programs

B

Eavesdropper

Eavesdropping Attack: Example

* tcpdump with promiscuous network
interface

— On a switched network, what can you see?

 What might the following traffic types
reveal about communications?
— DNS lookups (and replies)
— |P packets without payloads (headers only)
— Payloads

Integrity Attack - Tampering

« Stop the flow of the message
* Delay and optionally modify the message
 Release the message again

DR

Perpetrator

Authenticity Attack - Fabrication

* Unauthorized assumption of other’s identity

* Generate and distribute messages under this
identity

« Special case - replay attack

- ®

Masquerader: from A

Attack on Availability

Destroy hardware (cutting fiber) or software
Modify software in a subtle way
Corrupt packets in transit

\|
’|

Blatant denial of service (DoS):

— Crashing the server

— Overwhelm the server (use up its resource)

— Special case: Distributed Denial of Service (DDos)

Basic Forms of Cryptography

Confidentiality through Cryptography

« Cryptography: communication over insecure
channel in the presence of adversaries

« Studied for thousands of years

« Central goal: how to encode information so that an
adversary can't extract it ...but a friend can

« General premise: a key is required for decoding
— Give it to friends, keep it away from attackers

« Two different categories of encryption
— Symmetric: efficient, requires key distribution

— Asymmetric (Public Key): simplifies key distribution,
but more computationally expensive

Symmetric Key Encryption

Same key for encryption and decryption

— Both sender and receiver know key

— But adversary does not know key

For communication, problem is key distribution
— How do the parties (secretly) agree on the key?

What can you do with a huge key? One-time pad
— Huge key of random bits

To encrypt/decrypt: just XOR with the key!

— Provably securel! provided:
* You never reuse the key ... and it really is random

— Spies actually use these

Using Symmetric Keys

« Both the sender and the receiver use the
same secret keys

Plaintext Plaintext

Internet

Decrypt with
secret key

Encrypt with
secret key

Ciphertext

Asymmetric Encryption (Public Key)

* ldea: use two different keys, one to encrypt (e)
and one to decrypt (d)
— Akey pair
« Crucial property: knowing e does not tell you d
 Therefore e can be public: everyone knows it!

* [If Alice wants to send to Bob, she fetches Bob’s
public key (say from Bob’s home page) and
encrypts with it

— Alice can’t decrypt what she’s sending to Bob ...
— ... but then, neither can anyone else (except Bob)

Public Key / Asymmetric Encryption

« Sender uses receiver’s public key
— Advertised to everyone

 Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Internet
Encrypt with erne

public key

Decrypt with
private key

Ciphertext

Works in Reverse Direction Too!

« Sender signs his own private key
* Receiver verifies with public key
« Allows sender to prove he knows private key

Plaintext Plaintext

Internet)
erne Encrypt with
private key

Ciphertext

Decrypt with
public key

Realizing Public Key Cryptography

* Invented in the 1970s

— Revolutionized cryptography
— (Was actually invented earlier by British intelligence)

« How can we construct an encryption/
decryption algorithm with public/private
properties?

— Answer: Number Theory
* Most fully developed approach: RSA
— Rivest / Shamir / Adleman, 1977; RFC 3447
— Based on modular multiplication of very large integers
—Very widely used (e.g., SSL/TLS for https)

e RSA:

— assumes it is difficult to factor a large integer with two
large prime factors

 Elliptic Curve:

— discrete logarithm of a random elliptic curve in a finite
field

« CS166 — Introduction to Computer Systems
Security

 CS151 - Introduction to Cryptography and
Computer Security

Cryptographic Toolkit

Cryptographic Toolkit

Confidentiality: Encryption
Integrity: ?
Authentication: ?
Provenance: ?

Integrity: Cryptographic Hashes

Sender computes a digest of message m, i.e.,
H(m)

— H() is a publicly known hash function

Send m in any manner

Send digest d = H(m) to receiver in a secure
way:

— Using another physical channel

— Using encryption (why does this help?)

Upon receiving m and d, receiver re-computes
H(m) to see whether result agrees with d

Operation of Hashing for Integrity

Plaintext corrupted msg Plaintext
NO

v digest’
Digest Internet Digest
(SHA-256) (SHA-256)

digest

Cryptographically Strong Hashes

 Hard to invert
— Given hash, adversary can't find input that produces it

— Allows oblique reference to private objects (e.g.,
passwords)

« Send hash of object rather than object itself

« Hard to find collisions
— Adversary can’t find two inputs that produce same hash
— So can't alter message without modifying digest
— Allows succinct reference to large objects (e.qg.
BitTorrent blocks)
* Here, “Can’t” means “Thought to be
computationally infeasible”

Effects of Cryptographic Hashing

Input Hash sum

Hash DFCD3454 BBEA788A

Fox — e —P 751A696C 24D97009
CA992D17

The red fox Hash 52ED879E 70F71D92

FUNS across - function P 6EB69570 0S8E03CE4
the ice CAB945D3

The red fox Hash 46042841 935C7FBO

walks across ¥ ¢ . tion 7| 9158585A B94AE214
the ice 26EB3CEA

Cryptographic Toolkit

Confidentiality: Encryption
Integrity: Cryptographic Hash
Authentication: ?
Provenance: ?

Public Key Authentication

 Each side only needs to
know the other side’s public A
key

—No secret key need be shared

* A encrypts a nonce (random
number) x using B’s public
key

B proves it can recover x

A can authenticate itself to
B in the same way

E(X’ P UblicB)

bs

Cryptographic Toolkit

Confidentiality: Encryption
Integrity: Cryptographic Hash
Authentication: Decrypting nonce
Provenance: ?

Digital Signatures

« Suppose Alice has published public key K¢

 |f she wishes to prove who she is, she can
send a message x encrypted with her
private key K,
— Therefore: anyone w/ public key K¢ can recover x,
verify that Alice must have sent the message
— It provides a digital signature

— Alice can’t deny it later = non-repudiation
« Well, she could claim her key was compromised

RSA Crypto & Signatures, con’t

Alice
will | [Sign (h
pay $500 (Encrypt)
Alice's
* private key

DFCD3454

BBEA788A
Bob +

will | [Verify /@_L-JJ

pay $500 (Decrypt) Alice's
public key

Summary of Our Crypto Toolkit

 If we can securely distribute a key, then

— Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

* Public key cryptography does away with
problem of secure key distribution
— But not as computationally efficient

— Often addressed by using public key crypto to
exchange a session key

— Not guaranteed secure
« But it would be a major result if it isn’t

Summary of Our Crypto Toolkit, con’t

« Cryptographically strong hash functions provide
major building block for integrity (e.g., SHA-1)
— As well as providing concise digests

— And providing a way to prove you know something (e.g.,
passwords) without revealing it (non-invertibility)

— But: worrisome recent results regarding their strength

* Public key also gives us signatures
— Including sender non-repudiation

* Turns out there’s a crypto trick based on similar
algorithms that allows two parties who don’t
know each other’s public key to securely
negotiate a secret key even in the presence of
eavesdroppers Diffie-Hellman exchange

PKls and HTTPS

Public Key Infrastructure (PKIl)

Public key crypto is very powerful ...

... but the realities of tying public keys to
real world identities turn out to be quite
hard

PKI: Trust distribution mechanism
— Authentication via Digital Certificates

Trust doesn’t mean someone is honest,
just that they are who they say they are...

Managing Trust

 The most solid level of trust is rooted in our
direct personal experience

— E.g., Alice’s trust that Bob is who they say they are
— Clearly doesn’t scale to a global network!

* In its absence, we rely on delegation
— Alice trusts Bob’s identity because Charlie attests to it

— and Alice trusts Charlie

Managing Trust, con’t
* Trust is not particularly transitive
— Should Alice trust Bob because she trusts Charlie ...
— ... and Charlie vouches for Donna ...
— ... and Donna says Eve is trustworthy ...
— ... and Eve vouches for Bob’s identity?

 Two models of delegating trust

— Rely on your set of friends and their friends
« “Web of trust” -- e.g., PGP
— Rely on trusted, well-known authorities (and their
minions)
* “Trusted root” -- e.g., HTTPS

PKI Conceptual Framework
Trusted-Root PKI:

— Basis: well-known public key serves as root of a hierarchy
— Managed by a Certificate Authority (CA)

To publish a public key, ask the CA to digitally sign
a statement indicating that they agree (“certify”)
that it is indeed your key

— This is a certificate for your key (certificate = bunch of bits)
* Includes both your public key and the signed statement

— Anyone can verify the signature

Delegation of trust to the CA

— They'd better not screw up (duped into signing bogus key)
— They'd better have procedures for dealing with stolen keys
— Note: can build up a hierarchy of signing

Components of a PKI

Certification
Authority

=] &

_ Public-key
Policy Certificates

PKl-enabled
Application

Registration
Authority

Y s—
PKI client software

Digital Certificate

- Signed data structure that binds an entity
rickey WIth Its corresponding public key

e — Signed by a recognized and trusted authority, i.e.,
Certification Authority (CA)

— Provide assurance that a particular public key belongs
to a specific entity
 Example: certificate of entity Y
Cert = E({nameY’ KYpuinc}! KCAprivate)
— KCA,vate: Private key of Certificate Authority
— namey: name of entity Y
— KY ubic: Public key of entity Y
* In fact, they may sign whatever glob of bits you give them

 Your browser has a bunch of CAs wired into
it

Certification Authority

delivery and management of digital
e certificates

aroy o Qrganized in an hierarchy
— To verify signature chain, follow hierarchy up to root

; People, processes responsible for creation,

Root CA

CA-1 / A\mz

Certification
Authority

Certification Certification
Authority Authority

Registration Authority

 People & processes responsible for:

— Authenticating the identity of new entities
(users or computing devices), e.g.,
* By phone, or physical presence + ID

— Issuing requests to CA for certificates

 The CA must trust the Registration
Authority

— This trust can be misplaced

Certificate
Repository

Certificate Repository

A database accessible to all users of a
PKI

« Contains:
— Digital certificates

— Policy information associated with
certs

— Certificate revocation information

* Vital to be able to identify certs that have
been compromised

« Usually done via a revocation list

HTTPS

« After clicking https://www.amazon.com

* https = “Use HTTP over SSL/TLS”

— SSL = Secure Socket Layer
— TLS = Transport Layer Security

« Successor to SSL, and compatible with it

— RFC 4346

* Provides security layer (authentication,
encryption) on top of TCP

— Fairly transparent to the app

HTTPS Connection (SSL/TLS), con’t

Browser (client)
connects via TCP to
Amazon’ s HTTPS
server

Client sends over list
of crypto protocols it
supports

Server picks protocols
to use for this session

Server sends over its
certificate
(all of this is in the clear)

Browser Amazon

=

=]
\E|

Inside the Server’s Certificate

Name associated with cert (e.g., Amazon)
Amazon’s public key

A bunch of auxiliary info (physical address,
type of cert, expiration time)

URL to revocation center to check for revoked
keys
Name of certificate’s signatory (who signed it)

A public-key signature of a hash of all this
— Constructed using the signatory’s private RSA key

Validating Amazon'’s ldentity

Browser retrieves cert belonging to the
sighatory

— These are hardwired into the browser

If it can’t find the cert, then warns the user
that site has not been verified

— And may ask whether to continue
— Note, can still proceed, just without authentication

Browser uses public key in signatory’s cert
to decrypt signature
— Compares with its own hash of Amazon’s cert

Assuming signhature matches, now have
high confidence it’s indeed Amazon ...

— ... assuming signatory is trustworthy

HTTPS Connection (SSL/TLS), con’t

 Browser constructs a Browser Amazon
random session key K

 Browser encrypts K using
Amazon’s public key

 Browser sends E(K,

KApuinc) to server bublic)

 Browser displays

- All subsequent ™ (y K
communication encrypted

w/ symmetric cipher using E(pass
— E.g., client can authenticate
using a password K)

DNS Security

DNS Data Flow

Points of attack

zone
i file |
(text, 1
DB) i
o caching - [
= < STUB resolver dynamic
= resolver {recursive) 1 updates {
; 1 . |
| | SLAVES | \ |
i ; | | \ |
e I I I \ I
=
< 2 | I £ 5 }D-D#Iﬂ{) I
- o man in the cache modified rlnaaterJ spoofed | | corrupted
<= middle poisoning data (routing/DoS) updates data

Source: http://nsrc.org/tutorials/2009/apricot/dnssec/dnssec-tutorial.pdf

Root level DNS attacks

 Feb. 6, 2007:
— Botnet attack on the 13 Internet DNS root servers
— Lasted 2.5 hours

— None crashed, but two performed badly:
« g-root (DoD), I-root (ICANN)
« Most other root servers use anycast

Do you trust the TLD operators?

 Wildcard DNS record for all .com and .net
domain names not yet registered by others
— September 15 — October 4, 2003
— February 2004: Verisign sues ICANN

* Redirection for these domain names to
Verisignh web portal: “to help you search”

— and serve you ads...and get “sponsored” search

Defense: Replication and Caching

Letter Old name Operator Location
A |ns.internic.net | VeriSign Dulles, Virginia, USA
B | nsl.isi.edu ISI Marina Del Rey, California, USA
C c.psi.net Cogent Communications | distributed using anycast
D | terp.umd.edu |University of Maryland College Park, Maryland, USA
E ns.nasa.gov NASA Mountain View, California, USA
F ns.isc.org ISC distributed using anycast
G ns.nic.ddn.mil |U.S. DoD NIC Columbus, Ohio, USA
H | aos.arl.army.mil U.S. Army Research Lab®) |Aberdeen Proving Ground, Maryland, USA
I nic.nordu.net | Autonomica @& distributed using anycast
) VeriSign distributed using anycast
K RIPE NCC distributed using anycast
L ICANN Los Angeles, California, USA
M WIDE Project distributed using anycast

source: wikipedia

DNS Amplification Attack

DNS Amplification attack: (x40 amplification)

DNS Query
SrclP: DoS Target EDNS Reponse
(60 bytes) ! (3000 bytes)
oS DNS
Source Server

Solutions

ip spoofed packets
open

>
> .c
> \ amplifiey
>

&
4 T &
prevent

ip spoofing
N

disable
open amplifiers

/

=

=]
\E|

But should we believe it?
Enter DNSSEC

 DNSSEC protects against data spoofing and
corruption

 DNSSEC also provides mechanisms to
authenticate servers and requests

« DNSSEC provides mechanisms to establish
authenticity and integrity

PK-DNSSEC (Public Key)

 The DNS servers sign the hash of resource
record set with its private (signature) keys

* Public keys can be used to verify the SIGs
* Leverages hierarchy:

— Authenticity of nameserver’s public keys is established
by a signature over the keys by the parent’s private key

— In ideal case, only roots’ public keys need to be
distributed out-of-band

Verifying the tree

Question: www.cnn.com 7?

| (root)

dns.cs.brown.edu

Src.cs.brown.edu \“\ﬁ\“'

www.cnn.com A SIG (ip addr and PK of .com server)

stub >

&
<

resolver

www.chn.com A ?

reso IVe 'l- XXX XXX XXX XXX

transaction

s Y

com

ask cnn.com server
SIG (ip addr and PK of cnn.com server)

signatures (/

add to cache

slave servers

A
transaction

signatures

cnn.com

Next Class

« Some new trends, Software-Defined
Networking

« Second-to-last class!

