
CSCI-1680
Security

Based	
 on	
 lecture	
 notes	
 by	
 Sco1	
 Shenker,	
 Mike	
 Freedman,	
 and	
 Rodrigo	
 Fonseca	

John Jannotti

Today’s Lecture

•  Classes of attacks
•  Basic security requirements
•  Simple cryptographic methods
•  Crypto toolkit (Hash, Digital Signature, …)
•  DNSSec (in .pptx, won’t have time today)
•  Certificate Authorities
•  SSL / HTTPS

Basic Secure Communication Reqs

•  Availability: Will the network deliver data?
–  Infrastructure compromise, DDoS

•  Authentication: Who is this actor?
–  Spoofing, phishing

•  Integrity: Do messages arrive in original form?
•  Confidentiality: Can adversary read the data?

–  Sniffing, man-in-the-middle
•  Provenance: Who is responsible for this data?

–  Forging responses, denying responsibility
–  Not who sent the data, but who created it

Other Desirable Security Properties

•  Authorization: is actor allowed to do this
action?
–  Access controls

•  Accountability/Attribution: who did this activity?
•  Audit/Forensics: what occurred in the past?

–  A broader notion of accountability/attribution
•  Appropriate use: is action consistent with

policy?
–  E.g., no spam; no games during business hours; etc.

•  Freedom from traffic analysis: can someone tell
when I am sending and to whom?

•  Anonymity: can someone tell I sent this packet?

Internet’s Design: Insecure

•  Designed for simplicity in a naïve era
•  “On by default” design
•  Readily available zombie machines
•  Attacks look like normal traffic
•  Internet’s federated operation obstructs

cooperation for diagnosis/mitigation

Eavesdropping - Message Interception
(Attack on Confidentiality)

•  Unauthorized access to information
•  Packet sniffers and wiretappers
•  Illicit copying of files and programs

A B

Eavesdropper

Eavesdropping Attack: Example
•  tcpdump with promiscuous network

interface
–  On a switched network, what can you see?

•  What might the following traffic types
reveal about communications?
–  DNS lookups (and replies)
–  IP packets without payloads (headers only)
–  Payloads

Integrity Attack - Tampering

•  Stop the flow of the message
•  Delay and optionally modify the message
•  Release the message again

A B

Perpetrator

Authenticity Attack - Fabrication
•  Unauthorized assumption of other’s identity
•  Generate and distribute messages under this

identity
•  Special case – replay attack

A B

Masquerader: from A

Attack on Availability
•  Destroy hardware (cutting fiber) or software
•  Modify software in a subtle way
•  Corrupt packets in transit

•  Blatant denial of service (DoS):
–  Crashing the server
–  Overwhelm the server (use up its resource)
–  Special case: Distributed Denial of Service (DDos)

A B

Basic Forms of Cryptography

Confidentiality through Cryptography

•  Cryptography: communication over insecure
channel in the presence of adversaries

•  Studied for thousands of years
•  Central goal: how to encode information so that an

adversary can’t extract it …but a friend can
•  General premise: a key is required for decoding

–  Give it to friends, keep it away from attackers
•  Two different categories of encryption

–  Symmetric: efficient, requires key distribution
–  Asymmetric (Public Key): simplifies key distribution,

but more computationally expensive

Symmetric Key Encryption

•  Same key for encryption and decryption
–  Both sender and receiver know key
–  But adversary does not know key

•  For communication, problem is key distribution
–  How do the parties (secretly) agree on the key?

•  What can you do with a huge key? One-time pad
–  Huge key of random bits

•  To encrypt/decrypt: just XOR with the key!
–  Provably secure! …. provided:

•  You never reuse the key … and it really is random
–  Spies actually use these

Using Symmetric Keys

•  Both the sender and the receiver use the
same secret keys

Internet Encrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

Asymmetric Encryption (Public Key)

•  Idea: use two different keys, one to encrypt (e)
and one to decrypt (d)
–  A key pair

•  Crucial property: knowing e does not tell you d
•  Therefore e can be public: everyone knows it!
•  If Alice wants to send to Bob, she fetches Bob’s

public key (say from Bob’s home page) and
encrypts with it
–  Alice can’t decrypt what she’s sending to Bob …
–  … but then, neither can anyone else (except Bob)

Public Key / Asymmetric Encryption

•  Sender uses receiver’s public key
–  Advertised to everyone

•  Receiver uses complementary private key
–  Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Works in Reverse Direction Too!

•  Sender signs his own private key
•  Receiver verifies with public key
•  Allows sender to prove he knows private key

Internet
Decrypt with
public key

Encrypt with
private key

Plaintext Plaintext

Ciphertext

Realizing Public Key Cryptography

•  Invented in the 1970s
– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

•  How can we construct an encryption/
decryption algorithm with public/private
properties?

– Answer: Number Theory
•  Most fully developed approach: RSA

– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., SSL/TLS for https)

•  RSA:
–  assumes it is difficult to factor a large integer with two

large prime factors
•  Elliptic Curve:

–  discrete logarithm of a random elliptic curve in a finite
field

•  CS166 – Introduction to Computer Systems
Security

•  CS151 – Introduction to Cryptography and
Computer Security

Cryptographic Toolkit

Cryptographic Toolkit

•  Confidentiality: Encryption
•  Integrity: ?
•  Authentication: ?
•  Provenance: ?

Integrity: Cryptographic Hashes
-  Sender computes a digest of message m, i.e.,

H(m)
–  H() is a publicly known hash function

-  Send m in any manner
-  Send digest d = H(m) to receiver in a secure

way:
–  Using another physical channel
–  Using encryption (why does this help?)

-  Upon receiving m and d, receiver re-computes
H(m) to see whether result agrees with d

Operation of Hashing for Integrity

Internet Digest
(SHA-256)

Plaintext

digest

Digest
(SHA-256)

=

digest’

NO

corrupted msg Plaintext

Cryptographically Strong Hashes

•  Hard to invert
–  Given hash, adversary can’t find input that produces it
–  Allows oblique reference to private objects (e.g.,

passwords)
•  Send hash of object rather than object itself

•  Hard to find collisions
–  Adversary can’t find two inputs that produce same hash
–  So can’t alter message without modifying digest
–  Allows succinct reference to large objects (e.g.

BitTorrent blocks)
•  Here, “Can’t” means “Thought to be

computationally infeasible”

Effects of Cryptographic Hashing

Cryptographic Toolkit

•  Confidentiality: Encryption
•  Integrity: Cryptographic Hash
•  Authentication: ?
•  Provenance: ?

Public Key Authentication

•  Each side only needs to
know the other side’s public
key

– No secret key need be shared

•  A encrypts a nonce (random
number) x using B’s public
key

•  B proves it can recover x
•  A can authenticate itself to

B in the same way

E(x, PublicB)

x

A B

Cryptographic Toolkit

•  Confidentiality: Encryption
•  Integrity: Cryptographic Hash
•  Authentication: Decrypting nonce
•  Provenance: ?

Digital Signatures

•  Suppose Alice has published public key KE
•  If she wishes to prove who she is, she can

send a message x encrypted with her
private key KD
– Therefore: anyone w/ public key KE can recover x,

verify that Alice must have sent the message
–  It provides a digital signature
– Alice can’t deny it later ⇒ non-repudiation

•  Well, she could claim her key was compromised

RSA Crypto & Signatures, con’t

Summary of Our Crypto Toolkit
•  If we can securely distribute a key, then

– Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

•  Public key cryptography does away with
problem of secure key distribution
– But not as computationally efficient
– Often addressed by using public key crypto to

exchange a session key
– Not guaranteed secure

•  But it would be a major result if it isn’t

Summary of Our Crypto Toolkit, con’t
•  Cryptographically strong hash functions provide

major building block for integrity (e.g., SHA-1)
–  As well as providing concise digests
–  And providing a way to prove you know something (e.g.,

passwords) without revealing it (non-invertibility)
–  But: worrisome recent results regarding their strength

•  Public key also gives us signatures
–  Including sender non-repudiation

•  Turns out there’s a crypto trick based on similar
algorithms that allows two parties who don’t
know each other’s public key to securely
negotiate a secret key even in the presence of
eavesdroppers Diffie-Hellman exchange

33	

PKIs and HTTPS

Public Key Infrastructure (PKI)
•  Public key crypto is very powerful …
•  … but the realities of tying public keys to

real world identities turn out to be quite
hard

•  PKI: Trust distribution mechanism

–  Authentication via Digital Certificates
•  Trust doesn’t mean someone is honest,

just that they are who they say they are…

Managing Trust

•  The most solid level of trust is rooted in our
direct personal experience
–  E.g., Alice’s trust that Bob is who they say they are
–  Clearly doesn’t scale to a global network!

•  In its absence, we rely on delegation
–  Alice trusts Bob’s identity because Charlie attests to it
….

–  …. and Alice trusts Charlie

Managing Trust, con’t
•  Trust is not particularly transitive

–  Should Alice trust Bob because she trusts Charlie …
– … and Charlie vouches for Donna …
– … and Donna says Eve is trustworthy …
– … and Eve vouches for Bob’s identity?

•  Two models of delegating trust
–  Rely on your set of friends and their friends

•  “Web of trust” -- e.g., PGP
–  Rely on trusted, well-known authorities (and their

minions)
•  “Trusted root” -- e.g., HTTPS

PKI Conceptual Framework
•  Trusted-Root PKI:

–  Basis: well-known public key serves as root of a hierarchy
–  Managed by a Certificate Authority (CA)

•  To publish a public key, ask the CA to digitally sign
a statement indicating that they agree (“certify”)
that it is indeed your key
–  This is a certificate for your key (certificate = bunch of bits)

•  Includes both your public key and the signed statement
–  Anyone can verify the signature

•  Delegation of trust to the CA
–  They’d better not screw up (duped into signing bogus key)
–  They’d better have procedures for dealing with stolen keys
–  Note: can build up a hierarchy of signing

Components of a PKI

Digital Certificate
•  Signed data structure that binds an entity

with its corresponding public key
–  Signed by a recognized and trusted authority, i.e.,

Certification Authority (CA)
–  Provide assurance that a particular public key belongs

to a specific entity
•  Example: certificate of entity Y

 Cert = E({nameY, KYpublic}, KCAprivate)
–  KCAprivate: private key of Certificate Authority
–  nameY: name of entity Y
–  KYpublic: public key of entity Y

•  In fact, they may sign whatever glob of bits you give them

•  Your browser has a bunch of CAs wired into
it

Certification Authority

•  People, processes responsible for creation,
delivery and management of digital
certificates

•  Organized in an hierarchy
–  To verify signature chain, follow hierarchy up to root

CA-1 CA-2

Root CA

Registration Authority

•  People & processes responsible for:
– Authenticating the identity of new entities

(users or computing devices), e.g.,
•  By phone, or physical presence + ID

–  Issuing requests to CA for certificates
•  The CA must trust the Registration

Authority
–  This trust can be misplaced

Certificate Repository
•  A database accessible to all users of a

PKI
•  Contains:

– Digital certificates
– Policy information associated with

certs
– Certificate revocation information

•  Vital to be able to identify certs that have
been compromised

•  Usually done via a revocation list

HTTPS
•  After clicking https://www.amazon.com
•  https = “Use HTTP over SSL/TLS”

–  SSL = Secure Socket Layer
–  TLS = Transport Layer Security

•  Successor to SSL, and compatible with it
–  RFC 4346

•  Provides security layer (authentication,
encryption) on top of TCP
–  Fairly transparent to the app

HTTPS Connection (SSL/TLS), con’t

•  Browser (client)
connects via TCP to
Amazon’s HTTPS
server

•  Client sends over list
of crypto protocols it
supports

•  Server picks protocols
to use for this session

•  Server sends over its
certificate

•  (all of this is in the clear)

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1	
 KB	
 of
	
 data	

45	

Inside the Server’s Certificate

•  Name associated with cert (e.g., Amazon)
•  Amazon’s public key
•  A bunch of auxiliary info (physical address,

type of cert, expiration time)
•  URL to revocation center to check for revoked

keys
•  Name of certificate’s signatory (who signed it)
•  A public-key signature of a hash of all this

–  Constructed using the signatory’s private RSA key

Validating Amazon’s Identity

•  Browser retrieves cert belonging to the
signatory
–  These are hardwired into the browser

•  If it can’t find the cert, then warns the user
that site has not been verified
–  And may ask whether to continue
–  Note, can still proceed, just without authentication

•  Browser uses public key in signatory’s cert
to decrypt signature
–  Compares with its own hash of Amazon’s cert

•  Assuming signature matches, now have
high confidence it’s indeed Amazon …
–  … assuming signatory is trustworthy

HTTPS Connection (SSL/TLS), con’t

•  Browser constructs a
random session key K

•  Browser encrypts K using
Amazon’s public key

•  Browser sends E(K,
KApublic) to server

•  Browser displays
•  All subsequent

communication encrypted
w/ symmetric cipher using
key K
–  E.g., client can authenticate

using a password

Browser Amazon

Here’s my cert

~1	
 KB	
 of
	
 data	

E(K, KApublic)
K

K

E(password …, K)

E(response …, K)

Agreed

DNS Security

Source:	
 h1p://nsrc.org/tutorials/2009/apricot/dnssec/dnssec-­‐tutorial.pdf	

Root level DNS attacks

•  Feb. 6, 2007:
–  Botnet attack on the 13 Internet DNS root servers
–  Lasted 2.5 hours
–  None crashed, but two performed badly:

•  g-root (DoD), l-root (ICANN)
•  Most other root servers use anycast

Do you trust the TLD operators?

•  Wildcard DNS record for all .com and .net
domain names not yet registered by others
–  September 15 – October 4, 2003
–  February 2004: Verisign sues ICANN

•  Redirection for these domain names to
Verisign web portal: “to help you search”
–  and serve you ads…and get “sponsored” search

Defense: Replication and Caching

source:	
 wikipedia	

DNS Amplification Attack

 580,000	
 open	
 resolvers	
 on	
 Internet	
 	
 (Kaminsky-­‐Shiffman’06)	

DNS	

Server	

DoS	

Source	

DoS	

Target	

DNS	
 Query	

SrcIP:	
 	
 DoS	
 Target	

	

	
 	
 	
 	
 (60	
 bytes)	

	

EDNS	
 Reponse	

	

(3000	
 bytes)	

DNS	
 Amplifica[on	
 a1ack:	
 	
 	
 (
 ×40	
 	
 amplifica[on	
)	

a1acker	

Solutions

ip	
 spoofed	
 packets	

vic[m	

open	

amplifier	

prevent	

ip	
 spoofing	

disable	

open	
 amplifiers	

But should we believe it?
Enter DNSSEC

•  DNSSEC protects against data spoofing and
corruption

•  DNSSEC also provides mechanisms to
authenticate servers and requests

•  DNSSEC provides mechanisms to establish
authenticity and integrity

PK-DNSSEC (Public Key)

•  The DNS servers sign the hash of resource
record set with its private (signature) keys

•  Public keys can be used to verify the SIGs
•  Leverages hierarchy:

–  Authenticity of nameserver’s public keys is established
by a signature over the keys by the parent’s private key

–  In ideal case, only roots’ public keys need to be
distributed out-of-band

Verifying the tree

stub	

	
 resolver	

Ques[on:	
 	
 www.cnn.com	
 	
 	
 ?	

www.cnn.com	
 A	
 ?	

resolver	

.(root)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ask	
 .com	
 server	

	
 SIG	
 (ip	
 addr	
 and	
 PK	
 of	
 .com	
 server)	

.com	

www.cnn.com	
 A	
 ?	

ask	
 cnn.com	
 server	
 	
 	
 	

SIG	
 (ip	
 addr	
 and	
 PK	
 of	
 cnn.com	
 server)	

cnn.com	

xxx.xxx.xxx.xxx	

add	
 to	
 cache	

Src.cs.brown.edu	

dns.cs.brown.edu

transac[on	
 	

signatures	

	

slave	
 servers	

transac[on	
 	

signatures	

Next Class

•  Some new trends, Software-Defined
Networking

•  Second-to-last class!

