
CSCI-1680
Network Layer:

IP & Forwarding

Based	partly	on	lecture	notes	by	David	Mazières,	Phil	Levis,	John	Jannotti

Rodrigo Fonseca
Instructor: Nicholas DeMarinis

Administrivia

• IP out today. Your job:
– Find partners, get setup with Github
– Implement IP forwarding and DV routing
– Get started TODAY J

• HW1 due today

Today

• Network layer: Internet Protocol (v4)
• Forwarding
– Addressing
– Fragmentation
– ARP
– DHCP
– NATs

• Next 2 classes: Routing

Internet Protocol Goal
• How to connect everybody?

– New global network or connect existing networks?
• Glue lower-level networks together:

– allow packets to be sent between any pair or hosts
• Wasn’t this the goal of switching?

R2

R1

H4

H5

H3H2H1

Network 2 (Ethernet)

Network 1 (Ethernet)

H6

Network 4
(point-to-point)

H7 R3 H8

Network 3 (FDDI)

Internetworking Challenges

• Heterogeneity
– Different addresses
– Different service models
– Different allowable packet sizes

• Scaling
• Congestion control

How would you design such a protocol?

• Circuits or packets?
– Predictability

• Service model
– Reliability, timing, bandwidth guarantees

• Any-to-any
– Finding nodes: naming, routing
– Maintenance (join, leave, add/remove links,…)
– Forwarding: message formats

IP’s Decisions

• Packet switched
– Unpredictability, statistical multiplexing

• Service model
– Lowest common denominator: best effort,

connectionless datagram
• Any-to-any
– Common message format
– Separated routing from forwarding
– Naming: uniform addresses, hierarchical organization
– Routing: hierarchical, prefix-based (longest prefix

matching)
– Maintenance: delegated, hierarchical

• Packet switched networks: Arpanet’s IMPs
– Late 1960’s
– RFC 1, 1969!
– Segmentation, framing, routing, reliability,

reassembly, primitive flow control
• Network Control Program (NCP)
– Provided connections, flow control
– Assumed reliable network: IMPs
– Used by programs like telnet, mail, file transfer

• Wanted to connect multiple networks
– Not all reliable, different formats, etc…

A Bit of History

TCP/IP Introduced
• Vint Cerf, Robert Kahn
• Replace NCP
• Initial design: single protocol providing a

unified reliable pipe
– Could support any application

• Different requirements soon emerged, and the
two were separated
– IP: basic datagram service among hosts
– TCP: reliable transport
– UDP: unreliable multiplexed datagram service

An excellent read

David D. Clark, “The design Philosophy of the
DARPA Internet Protocols”, 1988

• Primary goal: multiplexed utilization of existing
interconnected networks

• Other goals:
– Communication continues despite loss of networks or

gateways
– Support a variety of communication services
– Accommodate a variety of networks
– Permit distributed management of its resources
– Be cost effective
– Low effort for host attachment
– Resources must be accountable

Internet Protocol

• IP Protocol running on all hosts and routers
• Routers are present in all networks they join
• Uniform addressing
• Forwarding/Fragmentation
• Complementary:

– Routing, Error Reporting, Address Translation

R1 R2 R3

H1 H8

ETH FDDI

IP

ETH

TCP

FDDI PPP PPP ETH

IP

ETH

TCP

IP IP IP

IP Protocol

• Provides addressing and forwarding
– Addressing is a set of conventions for naming nodes

in an IP network
– Forwarding is a local action by a router: passing a

packet from input to output port
• IP forwarding finds output port based on

destination address
– Also defines certain conventions on how to handle

packets (e.g., fragmentation, time to live)
• Contrast with routing
– Routing is the process of determining how to map

packets to output ports (topic of next two lectures)

Service Model

• Connectionless (datagram-based)
• Best-effort delivery (unreliable service)
– packets may be lost
– packets may be delivered out of order
– duplicate copies of packets may be delivered
– packets may be delayed for a long time

• It’s the lowest common denominator
– A network that delivers no packets fits the bill!
– All these can be dealt with above IP (if probability of

delivery is non-zero…)

IP packet format

Data

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

hdr lenvers TOS Total Length

Identification Fragment offsetDM

TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

F0 F

IP v4 packet format

IP header details

• Forwarding based on destination address
• TTL (time-to-live) decremented at each hop
– Originally was in seconds (no longer)
– Mostly prevents forwarding loops
– Other cool uses…

• Fragmentation possible for large packets
– Fragmented in network if crossing link w/ small frame
– MF: more fragments for this IP packet
– DF: don’t fragment (returns error to sender)

• Following IP header is “payload” data
– Typically beginning with TCP or UDP header

Other fields

• Version: 4 (IPv4) for most packets, there’s also 6
• Header length: in 32-bit units (>5 implies options)
• Type of service (won’t go into this)
• Protocol identifier (TCP: 6, UDP: 17, ICMP: 1, …)
• Checksum over the header

Format of IP addresses
• Globally unique (or made seem that way)
– 32-bit integers, read in groups of 8-bits:

128.148.32.110
• Hierarchical: network + host
• Originally, routing prefix embedded in address

– Class A (8-bit prefix), B (16-bit), C (24-bit)
– Routers need only know route for each network

Network Host

7 24

0
(a)

Network Host

14 16

1 0
(b)

Network Host

21 8

1 1 0
(c)

Forwarding Tables

• Exploit hierarchical structure of addresses:
need to know how to reach networks, not hosts

• Keyed by network portion, not entire address
• Next address should be local: router knows

how to reach it directly* (we’ll see how soon)

Network Next	Address
212.31.32.* 0.0.0.0
18.*.*.* 212.31.32.5

128.148.*.* 212.31.32.4
Default 212.31.32.1

Classed Addresses

• Hierarchical: network + host
– Saves memory in backbone routers (no default routes)
– Originally, routing prefix embedded in address
– Routers in same network must share network part

• Inefficient use of address space
– Class C with 2 hosts (2/255 = 0.78% efficient)
– Class B with 256 hosts (256/65535 = 0.39% efficient)
– Shortage of IP addresses
– Makes address authorities reluctant to give out class B’s

• Still too many networks
– Routing tables do not scale

• Routing protocols do not scale

CIDR: Classless Inter-Domain Routing

• Problems: routing table growth, granularity of
allocation

• Idea: assign blocks of contiguous networks to
nearby networks

• Represent blocks with a single pair
– (first network address, count)

• Restrict block sizes to powers of 2
• Use a bit mask (CIDR mask) to identify block size
• Address aggregation: reduce routing tables

Obtaining IP Addresses

• Blocks of IP addresses allocated hierarchically
– ISP obtains an address block, may subdivide
ISP: 128.35.16/20 10000000 00100011 00010000 00000000
Client 1: 128.35.16/22 10000000 00100011 00010000 00000000
Client 2: 128.35.20/22 10000000 00100011 00010100 00000000
Client 3: 128.35.24/21 10000000 00100011 00011000 00000000

• Global allocation: ICANN, /8’s (ran out!)
• Regional registries: ARIN, RIPE, APNIC, LACNIC,

AFRINIC

CIDR Forwarding Table

Network Next	Address
212.31.32/24 0.0.0.0

18/8 212.31.32.5
128.148/16 212.31.32.4

128.148.128/17 212.31.32.8
0/0 212.31.32.1

Example
Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15
128.96.34.1

H1 R1

128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H3

H1-> H2: H2.ip & H1.mask != H1.subnet => no direct path

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15
128.96.34.1

H1 R1

128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H3

R1’s Forwarding Table

Network Subnet Mask Next	Address

128.96.34.0 255.255.255.128 128.96.34.1

128.96.34.128 255.255.255.128 128.96.34.130

128.96.33.0 255.255.255.0 128.96.34.129

Translating IP to lower level addresses
or… How to reach these local addresses?

• Map IP addresses into physical addresses
– E.g., Ethernet address of destination host
– or Ethernet address of next hop router

• Techniques
– Encode physical address in host part of IP address (IPv6)
– Each network node maintains lookup table (IP->phys)

ARP – address resolution protocol

• Dynamically builds table of IP to physical
address bindings for a local network

• Broadcast request if IP address not in table
• All learn IP address of requesting node

(broadcast)
• Target machine responds with its physical

address
• Table entries are discarded if not refreshed

ARP Ethernet frame format

• Why include source hardware address?

TargetHardwareAddr (bytes 2–5)

TargetProtocolAddr (bytes 0–3)

SourceProtocolAddr (bytes 2–3)

Hardware type = 1 ProtocolType = 0x0800

SourceHardwareAddr (bytes 4–5)

TargetHardwareAddr (bytes 0–1)

SourceProtocolAddr (bytes 0–1)

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0–3)

0 8 16 31

Obtaining Host IP Addresses - DHCP

• Networks are free to assign addresses within block to
hosts

• Tedious and error-prone: e.g., laptop going from CIT
to library to coffee shop

• Solution: Dynamic Host Configuration Protocol
– Client: DHCP Discover to 255.255.255.255 (broadcast)
– Server(s): DHCP Offer to 255.255.255.255 (why broadcast?)
– Client: choose offer, DHCP Request (broadcast, why?)
– Server: DHCP ACK (again broadcast)

• Result: address, gateway, netmask, DNS server

Network Address Translation (NAT)

• Despite CIDR, it’s still difficult to allocate
addresses (232 is only 4 billion)

• We’ll talk about IPv6 later
• NAT “hides” entire network behind one address
• Hosts are given private addresses
• Routers map outgoing packets to a free

address/port
• Router reverse maps incoming packets
• Problems?

Fragmentation & Reassembly

• Each network has maximum transmission unit
(MTU)

• Strategy
– Fragment when necessary (MTU < size of datagram)
– Source tries to avoid fragmentation (why?)
– Re-fragmentation is possible
– Fragments are self-contained datagrams
– Delay reassembly until destination host
– No recovery of lost fragments

Fragmentation Example

• Ethernet MTU is 1,500 bytes
• PPP MTU is 576 bytes
– R2 must fragment IP packets to forward them

H1 R1 R2 R3 H8

ETH FDDI

PPP IP (376)

PPP IP (512)

PPP IP (512) (512)

ETH IP

ETH IP

(512)ETH IP

(376)

IP (1400) IP (1400)

R1 R2 R3

Fragmentation Example (cont)

• IP addresses plus ident field
identify fragments of same packet

• MF (more fragments bit) is 1 in all
but last fragment

• Fragment offset multiple of 8
bytes
– Multiply offset by 8 for fragment

position original packet

(a)

Ident = x

Start of header

Rest of header

1400 data bytes

Offset = 00

(b)

Ident = x

Start of header

Rest of header

512 data bytes

Offset = 01

Ident = x

Rest of header

512 data bytes

Offset = 641

Start of header

Ident = x

Start of header

Rest of header

376 data bytes

Offset = 1280

Internet Control Message Protocol (ICMP)

• Echo (ping)
• Redirect
• Destination unreachable (protocol, port, or host)
• TTL exceeded
• Checksum failed
• Reassembly failed
• Can’t fragment
• Many ICMP messages include part of packet that

triggered them
• See http://www.iana.org/assignments/icmp-

parameters

ICMP message format

ICMP message format

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

20-byte IP header

ChecksumCodeType

depends on type/code

(protocol = 1—ICMP)

• Types include:
- echo, echo reply, destination unreachable, time exceeded, . . .

- See http://www.iana.org/assignments/icmp-parameters

Example: Time exceeded

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

20-byte IP header

ChecksumCodeType = 11

unused

IP header + first 8 payload bytes

of packet that caused ICMP to be generated

(protocol = 1—ICMP)

• Code usually 0 (TTL exceeded in transit)

• Discussion: How does traceroute work?

Example: Time Exceeded

• Code usually 0 (TTL exceeded in transit)
• Discussion: traceroute

Example: Can’t Fragment

• Sent if DF=1 and packet length > MTU
• What can you use this for?
• Path MTU Discovery
– Can do binary search on packet sizes
– But better: base algorithm on most common MTUs

Coming Up

• Routing: how do we fill the routing tables?
– Intra-domain routing: Tuesday, 10/4
– Inter-domain routing: Thursday, 10/6

Example

arp -n
Address HWtype HWaddress Flags Mask Iface
172.17.44.1 ether 00:12:80:01:34:55 C eth0
172.17.44.25 ether 10:dd:b1:89:d5:f3 C eth0
172.17.44.6 ether b8:27:eb:55:c3:45 C eth0
172.17.44.5 ether 00:1b:21:22:e0:22 C eth0

ip route
127.0.0.0/8 via 127.0.0.1 dev lo
172.17.44.0/24 dev enp7s0 proto kernel scope link src 172.17.44.22 metric 204
default via 172.17.44.1 dev eth0 src 172.17.44.22 metric 204

