
CSCI-1680 
Transport Layer I 

 

Based	  partly	  on	  lecture	  notes	  by	  David	  Mazières,	  Phil	  Levis,	  John	  Janno<	  

Rodrigo Fonseca 



Today 

•  Transport Layer 
–  UDP 
–  TCP Intro 

•  Connection Establishment 



Transport Layer 

•  Transport protocols sit on top of network layer 
•  Problem solved: communication among 

processes 
–  Application-level multiplexing (“ports”) 
–  Error detection, reliability, etc. 

Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+ )*#, )*#!

-##$ ). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.



UDP – User Datagram Protocol 

•  Unreliable, unordered datagram service 
•  Adds multiplexing, checksum 
•  End points identified by ports 

–  Scope is an IP address (interface) 
•  Checksum aids in error detection 



UDP Header 

SrcPort DstPort

ChecksumLength

Data

0 16 31



UDP Checksum 

•  Uses the same algorithm as the IP checksum 
–  Set Checksum field to 0 
–  Sum all 16-bit words, adding any carry bits to the LSB 
–  Flip bits to get checksum (except 0xffff->0xffff) 
–  To check: sum whole packet, including sum, should 

get 0xffff 
•  How many errors? 

–  Catches any 1-bit error 
–  Not all 2-bit errors 

•  Optional in IPv4: not checked if value is 0 



Pseudo Header 

•  UDP Checksum is computer over pseudo-
header prepended to the UDP header 
–  For IPv4: IP Source, IP Dest, Protocol (=17), plus 

UDP length 
•  What does this give us? 
•  What is a problem with this? 

–  Is UDP a layer on top of IP? 

 0      7 8     15 16    23 24    31 
+--------+--------+--------+--------+ 
|          source address           | 
+--------+--------+--------+--------+ 
|        destination address        |  
+--------+--------+--------+--------+ 
|  zero  |protocol|   UDP length    |   
+--------+--------+--------+--------+ 
	  



Next Problem: Reliability 

•  Review: reliability on the link layer 

Problem	   Mechanism	  

Acknowledgments	  +	  Timeout	  
	  

Dropped	  Packets	  

Duplicate	  Packets	   Sequence	  Numbers	  

Packets	  out	  of	  order	   Receiver	  Window	  

Keeping	  the	  pipe	  full	   Sliding	  Window	  (Pipelining)	  

•  Single link: things were easy… J 



Transport Layer Reliability 

•  Extra difficulties 
–  Multiple hosts 
–  Multiple hops 
–  Multiple potential paths 

•  Need for connection establishment, tear down 
–  Analogy: dialing a number versus a direct line 

•  Varying RTTs 
–  Both across connections and during a connection 
–  Why do they vary? What do they influence? 



Extra Difficulties (cont.) 

•  Out of order packets 
–  Not only because of drops/retransmissions 
–  Can get very old packets (up to 120s), must not get 

confused 
•  Unknown resources at other end 

–  Must be able to discover receiver buffer: flow control 

•  Unknown resources in the network 
–  Should not overload the network 
–  But should use as much as safely possible 
–  Congestion Control (next class) 



TCP – Transmission Control Protocol 

•  Service model: “reliable, connection oriented, full 
duplex byte stream” 
–  Endpoints: <IP Address, Port> 

•  Flow control 
–  If one end stops reading, writes at other eventually stop/fail 

•  Congestion control 
–  Keeps sender from overloading the network 

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …



TCP 

•  Specification 
–  RFC 793 (1981), RFC 1222 (1989, some corrections), 

RFC 5681 (2009, congestion control), … 
•  Was born coupled with IP, later factored out 

–  We talked about this, don’t always need everything! 
•  End-to-end protocol 

–  Minimal assumptions on the network 
–  All mechanisms run on the end points 

•  Alternative idea: 
–  Provide reliability, flow control, etc, link-by-link 
–  Does it work? 



Why not provide (*) on the network layer? 

•  Cost 
– These functionalities are not free: don’t burden those 

who don’t need them 
•  Conflicting 

–  Timeliness and in-order delivery, for example 
•  Insufficient 

–  Example: reliability 

* may be security, reliability, ordering guarantees, … 



End-to-end argument 

•  Functions placed at lower levels of a system may 
be redundant or of little value 
– They may need to be performed at a higher layer anyway 

•  But they may be justified for performance reasons 
–  Or just because they provide most of what is needed 
–  Example: retransmissions 

•  Lesson: weigh the costs and benefits at each layer 
–  Also: the end also varies from case to case 



TCP Header 
 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|          Source Port          |       Destination Port        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        Sequence Number                        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Acknowledgment Number                      |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|  Data |           |U|A|P|R|S|F|                               |   
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |   
|       |           |G|K|H|T|N|N|                               |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           Checksum            |         Urgent Pointer        |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                    Options                    |    Padding    |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                             data                              |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



Header Fields 

•  Ports: multiplexing 
•  Sequence number 

–  Correspond to bytes, not packets! 

•  Acknowledgment Number 
–  Next expected sequence number 

•  Window: willing to receive 
–  Lets receiver limit SWS (even to 0) for flow control 

•  Data Offset: # of 4 byte (header + option bytes) 
•  Flags, Checksum, Urgent Pointer 



Header Flags 

•  URG: whether there is urgent data  
•  ACK: ack no. valid (all but first segment) 
•  PSH: push data to the application immediately 
•  RST: reset connection 
•  SYN: synchronize, establishes connection 
•  FIN: close connection 



Establishing a Connection 

•  Three-way handshake 
–  Two sides agree on respective initial sequence nums 

•  If no one is listening on port: server sends RST 
•  If server is overloaded: ignore SYN 
•  If no SYN-ACK: retry, timeout 

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Listen,	  
Accept…	  

Accept	  
returns	  

Connect	  



Connection Termination 

•  FIN bit says no more data to send 
–  Caused by close or shutdown 
–  Both sides must send FIN to close a connection 

•  Typical close 
FIN	  

ACK	  

FIN	  

ACK	  

Close	  

Close	  

FIN_WAIT_1	  

CLOSE_WAIT	  

FIN_WAIT_2	  

LAST_ACK	  
TIME_WAIT	  

CLOSED	  

CLOSED	  

…

2M
SL
	  



Summary of TCP States 
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two 
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Passive	  close:	  
Can	  sWll	  send!	  AcWve	  close:	  

Can	  sWll	  receive	  

Co
nn

ec
Wo

n	  
Es
ta
bl
ish

m
en

t	  

Unsynchronized	  

Synchronized	  



-2-

closing of the transport connection as an end-of-transaction
marker. In each case, the application protocol requires that
servers close the transport connection, and the transport pro-
tocol requires that servers incur a memory cost if they do.
Protocols that use other methods of marking end-of-transac-
tion, e.g., SUN RPC over TCP[5], can have the clients close
connections at the expense of a more complex application
protocol.

If the number of clients continues to increase, the only way
to keep server TIME−WAIT memory requirements constant is
to move the TIME−WAIT TCBs to clients. Aggregating
more requests per connection merely reduces the growth of
the memory load with respect to increasing client load; mov-
ing the load to clients distributes server memory load to the
cause of that load.

As networks become faster and support more users, the
connection rates at busy servers are likely to increase, result-
ing in more TIME−WAIT loading. Even if packet demulti-
plexing is done efficiently, the memory cost of TIME−WAIT
loading can become a significant drain on server resources.
Servers will need additional physical memory resources to
support the load. For embedded servers using TCP, this
translates directly to a higher cost in dollars and power.

Distributing the TCBs across clients scales better than per-
transaction load reductions like persistent HTTP connections
for controlling TIME−WAIT loading. The transaction rate is
being driven up by the increasing bandwidth and the growing
number of users. Reducing each transaction’s cost only slows
the growth rate. Offloading TCBs to clients distributes the
load more equitably as the number of clients grows, riding the
growth curve instead of throttling it. Because Persistent con-
nections reduce other per-connection costs, such as extra con-
nection establishment overhead, our systems interoperate
with them.

This work presents three systems to distribute the
TIME−WAIT build-up to clients. We suggest avoiding
TIME−WAIT loading by negotiating which endpoint will
hold the TIME−WAIT TCB during connection establishment.
This provides the most control over TIME−WAIT location by
making the placement an explicit part of connection estab-
lishment; however, performing this negotiation and respecting
it when the connection is closed requires significant changes
to TCP.

In light of this, we also discuss two less invasive alternative
solutions: a modification to TCP that shifts the TIME−WAIT
TCB from server to client when the connection is closed; and
a modification to HTTP that supports the client closing the
connection and holding the TIME−WAIT TCB.

2. The TIME−WAIT State
This Section discusses the TIME−WAIT state and its use in

TCP in some detail, and how the TIME−WAIT state impacts

the performance of busy servers.

Endpoint 1
(address a, port p)

Endpoint 2
(address b, por t q)

FIN
FIN, ACK

ACK

SYN

SYN, ACK
ACK

Duplicate
Old Packet
Accepted!?

Ti
m

e

Old
Connection
Closed

New
Connection
Established

Figure 1: The Problem Addressed by the TIME−WAIT State

2.1. The Function of TIME−WAIT
The purpose of TIME−WAIT is to prevent delayed packets

from one connection being accepted by a later connection.
Concurrent connections are isolated by other mechanisms,
primarily by addresses, ports, and sequence numbers[1].

The TIME−WAIT state avoids the situation depicted in
Figure 1. Arrows represent packets, and endpoints’ time lines
run down the page. Packets are labelled with the header flags
that are relevant to connection establishment and shutdown;
unlabelled packets carry only data.

Specifically:
• A connection from (address a, port p) to (address b, port

q) is terminated
• A second connection from (address a, port p) to (address

b, port q) is established
• A duplicate packet from the first connection is delayed

in the network and arrives at the second connection
when its sequence number is in the second connection’s
window.

If such a packet appears, there is no way for the endpoints in
the second connection to determine that the delayed packet
contains data from the first connection.

This confusion can only exist if a second connection from
(address a, port p) to (address b, port q) is active while dupli-
cate packets from the first connection are still in the network.
TCP avoids this condition by blocking any second connection
between these address/port pairs until one can assume that all
duplicates must have disappeared.

From:	  The	  TIME−WAIT	  state	  in	  TCP	  and	  Its	  Effect	  on	  Busy	  Servers,	  Faber	  and	  Touch	  
Infocom	  1999	  



TIME_WAIT 

•  Why do you have to wait for 2MSL in TIME_WAIT? 
–  What if last ack is severely delayed, AND 
–  Same port pair is immediately reused for a new connection? 

•  Solution: active closer goes into TIME_WAIT 
–  Waits for 2MSL (Maximum Segment Lifetime) 

•  Can be problematic for active servers 
–  OS has too many sockets in TIME_WAIT, can accept less 

connections 
•  Hack: send RST and delete socket, SO_LINGER = 0 

–  OS won’t let you re-start server because port in use 
•  SO_REUSEADDR lets you rebind 



Next class 

•  Sending data over TCP 


