
CS168 Computer Networks Fonseca

Project 5: Capstone Project: LT Codes
Due: 11:59 PM, Dec 07, 2017

Contents

1 Introduction 1

2 Your Task 2

2.1 Algorithm . 2

2.2 Robust Soliton Distribution . 3

2.3 Pseudo-Random Number Generation . 4

2.4 Encoding the List of Blocks . 5

2.5 Programs . 5

2.6 Data Format . 6

3 Handin 7

3.1 What to Hand In . 7

4 Grading 7

4.1 Program - 90% . 7

4.2 README -10% . 7

A Pseudo-random sequence 9

B Degree distribution and source block sequence 10

1 Introduction

Erasure codes are a type of encoding of data, generally for transmission over a lossy medium, that
survive deletions (erasures) of parts of the message.1 They are especially useful for transmission
of data across a medium or network that can drop packets of data, when it is impractical for the
receiver to be in constant communication with the sender. Given a file with K blocks, the sender
generates B > K encoded blocks (B/K is called the rate of the code). The code is designed so that
after receiving any set of blocks of size at least K ′, for some K ′ slightly larger than K, the original
data can be decoded with high probability. For scenarios like broadcast, or for networks with very
long one-way delays (think the Mars rover sending an image to Earth), this is much more practical

1External methods, such as checksums, are used to detect and discard parts of the encoded data whose contents
have changed (contain errors). We focus here on algorithms for encoding, and subsequently decoding, the original
data from an error-free subset of the transmitted message.

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

than the receiver acknowledging every block, as done in the Transmission Control Protocol (TCP),
which is used on the web and by many other internet applications.

Reed-Solomon codes are a type of erasure code, but are not very practical for many applications, in
particular because you have to set the rate prior to encoding and transmitting. The problem is that
the rate might need to change depending on the quality of the channel at the receiver(s)! There
exist codes, however, that are rateless, in that a practically infinite number of coded blocks can be
generated from a fixed set of source blocks, and the receiver can still can decode the original set of
blocks with little overhead. These codes are also called fountain codes, in an analogy to a constant
stream of water from a fountain; any set of drops from the fountain will serve the purpose of filling
the receiver’s bucket.

In this project you will implement LT (Luby transform) Codes, which were the first practical rateless
erasure codes, and were invented in 1998 by Michael Luby and colleagues [1]. We will base our
description on chapter 50 of the book by MacKay [2], which is freely available for download. We
recommend that you read that chapter before beginning your project. In particular, you will need
to understand the encoding and decoding algorithms described in Sec. 50.1-50.2. We will use the
distributions described in Sec. 50.3, but you do not need to understand their justification.

LT Codes form the basis of the current state of the art in rateless codes, called Raptor Codes.
Raptor codes are faster than LT Codes, and generally require fewer blocks to decode, with K ′ very
close to K. They are used in several communication standards such as in broadcast of video to
mobile devices. Their implementation, however, is more involved.

2 Your Task

Your task is to implement two programs, shown here.

https://classroom.github.com/a/7d18vYog

The first, an encoder, reads a file and generates an infinite stream of blocks encoded by an LT Code.
The second, a decoder, reads such a stream until it is possible to reconstruct the original file.

LT Codes depend on randomness for their implementation, and we will take care to specify how
you will generate the required (pseudo-)random numbers so that the encoder and decoder will work
deterministically, given proper pseudo-random seeds.

2.1 Algorithm

LT Codes comprise two main algorithms, one for encoding and another for decoding. We briefly
sketch them here, and refer to [2] for further detail.

Consider a source file with K fixed-length blocks sk, k = 1, . . . ,K. We assume a degree distribution
µ(d) is provided, which is a discrete probability distribution (probability mass function) on integers
between 1 and K: µ(d) ≥ 0,

∑K
d=1 µ(d) = 1. Each encoded packet tn in the digital fountain is then

produced as follows:

1. Randomly sample the degree dn of the packet from µ(d).

2

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

2. Choose, uniformly at random, dn distinct input blocks. Set tn equal to the bitwise sum,
modulo 2, of these dn blocks.2

The encoded message is then these encoded packets, plus sufficient information for the decoder to
determine which source blocks where combined to produce each packet.

Now suppose that N encoded packets t1 . . . tN have been successfully received. For each packet tn,
construct a list of the source blocks sk which were used to encode that packet. The decoder then
proceeds as follows:

1. Find a packet tn which has exactly one source block sk in its list. If no such packet exists, the
decoder halts and fails. Otherwise:

(a) Set sk = tn.
(b) Set tn′ = tn′ ⊕ sk, for all packets tn′ which include source block sk in their encoding lists.
(c) Delete source block sk from all encoding lists.

2. Repeat step 1 until all source blocks are decoded.

As discussed by MacKay [2], it may be helpful to visualize the decoder using a sparse bipartite
graph, in which edges show which source blocks are encoded by each packet.

For those who are curious, this decoder is a special case of the celebrated sum-product or loopy
belief propagation (BP) algorithm. Because there can be no errors in received packets, only complete
erasures, the general BP algorithm substantially simplifies for LT codes.

We now discuss several important aspects of the implementation which you must follow.

2.2 Robust Soliton Distribution

While the encoder and decoder in Sec. 2.1 are valid algorithms for any degree distribution, the
decoder only succeeds with high probability if µ(d) is chosen with care. A starting point is the ideal
soliton distribution:

ρ(1) = 1
K
, ρ(d) = 1

d(d− 1) for d = 2, 3, . . . ,K. (1)

This distribution optimizes the expected probability that there is one decodable source block at each
iteration, but has an unacceptably high probability of failing at some iteration. To add robustness,
we define the following non-negative function:

τ(d) = S

K

1
d

for d = 1, 2, . . . , bK/Sc − 1,

τ(d) = S

K
ln(S/δ) for d = bK/Sc,

τ(d) = 0 for d > bK/Sc,
S = c ln(K/δ)

√
K.

2This is equivalent to the bitwise XOR operation, denoted ⊕, on the blocks.

3

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

Here, 0 < δ < 1 is a (conservative) bound on the probability that the decoding fails to succeed after
a certain number of packets are received. c > 0 is a free parameter, which can be tuned to optimize
performance. The robust soliton distribution is

µ(d) = ρ(d) + τ(d)
Z

, Z =
K∑

d=1
ρ(d) + τ(d). (2)

The inclusion of Z creates a properly normalized distribution which sums to one.

The robust soliton distribution of Eq. (2) defines the distribution µ(d) which you will use when
implementing your encoder. To sample from µ(d), first compute the corresponding cumulative
distribution function:

M(d) =
d∑

d′=1
µ(d′) (3)

Let u denote a number uniformly distributed between 0 and 1, for example drawn from the pseudo-
random generator of Sec. 2.3. We can then construct a sample d from µ(d) by finding the unique
bin (degree) for which M(d− 1) ≤ u < M(d), where M(0) = 0.

For this assignment, we will fix the parameters for the distribution. You will use the values of
c = 0.1 and δ = 0.5.

2.3 Pseudo-Random Number Generation

As we will see in Sec. 2.4, even though the algorithms depend on randomization, we need the precise
sequence of (pseudo-)random numbers used to be reproducible. To this end, you must use the
pseudo-random generator we define here. We will use a very simple pseudo-random generator, a
variant of a linear congruential generator, known as the Lehmer generator.3 With the particular
parameters specified below, it is called MinStd [3]. The generator is defined by the following equation:

next = A · state mod M (4)

We will use A = 16, 807 and M = 231 − 1 = 2, 147, 483, 647. M is a Mersenne prime, and A is a
primitive root modulo M , which guarantees maximum period for the random sequence. We define
three operations on a generator R:

1. R.nextInt(): returns next, and sets state = next.

2. R.setSeed(S): sets state = S.

3. R.getState(): returns state.

You should take care to not overflow the integer type of your language in the multiplication. Here is
a snippet of C code that implements nextInt() observing the width of the data types:

uint32_t M = 2147483647UL;
uint32_t A = 16807;
uint32_t MAX_RAND = M - 1;

3Although serving our purposes here, this pseudo-random number generator is a terrible choice for cryptography
applications, as well as for use in Monte Carlo simulations.

4

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

uint32_t state;

uint32_t nextInt() {
uint32_t next = (uint32_t)(((uint64_t)state * A) %
state = next;
return next;

}

To produce a number uniformly distributed between 0 and 1, which you need for generating samples
from µ(d), you should use double precision and divide the obtained integer byM−1 = MAX_RAND,
defined above.

We have provided a sequence of samples from this random number generator in Appendix A, which
you can use as an indication that your generator is producing correct samples.

2.4 Encoding the List of Blocks

One important aspect of the decoder is that it needs to know, for each encoded packet, the number
and identity of the source blocks from which it was created. Instead of encoding the list explicitly
in the packet, which could be wasteful, we will have the decoder generate this list using the same
process as the one used by the encoder. Since this involves sequences of (pseudo-)random numbers,
we will have to make sure the programs generate the same sequence for each block.

We will store in the encoded block the internal state of the random generator immediately before
encoding the block. This state, for our generator from Sec. 2.3, is simply a 32-bit number, which we
call the seed for the block. Given this seed, we will follow the steps below for the block. Since the
state of the generator changes with each invocation, it is important to follow these steps exactly:

1. Before processing block tn:

(a) If encoding tn, tn.seed = R.getState()
(b) If decoding tn, R.setSeed(tn.seed)

2. Generate r = R.nextInt() and use it to generate d from the robust soliton distribution (see
Sec. 2.2).

3. Generate d distinct numbers between 0 and K − 1, using (R.nextInt() mod K) for each one.
In case of repetition, keep generating new numbers until you get d distinct source blocks. This
is the list of source blocks corresponding to this encoded block.

Note that according to this, the source blocks are numbered 0 to K − 1. Appendix B has a list of
blocks generated in sequence with a fixed seed so you can compare your program.

2.5 Programs

It is your task to implement the algorithms outlined in this document, and to be compatible with the
reference implementations. Do not make up a different approach to tackle the problem. If you do,
you will fail the project. The choice of algorithm is fixed, as are several of the parameters that make

5

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

it possible for your encoded files to be decoded by our decoder, and our encoded files to be decoded
by your decoder. That said, you are free to choose the internal data structures you will use in the
encoder and the decoder, and should justify your choices in terms of practicality and efficiency.

You will write two executable console programs: encode and decode. encode will receive the name
of a file to encode, the block size, and optionally a random seed. encode will be called as follows:

$ encode <file> <block-size> [<seed>]

Where:

1. file is the name of the source file to be encoded.

2. block-size is an integer, the size of each encoded block, in bytes.

3. seed is an integer, the initial seed for the random number generator.

encode will process the file into blocks and then continually stream blocks to stdout. We describe
the format to stream these blocks in Sec. 2.6. encode must be able to handle files whose size is not
a multiple of the block size.

decode will receive an optional drop rate (from 0 to 100), and will receive a stream of blocks on
stdin. For any given block, it will drop the block (that is, neglect to process the block and simply
move on to reading the next block) with probability given by the drop rate. Once enough blocks
have been received to successfully reconstruct the original file, it will write this file to stdout. It
will be invoked as follows:

$ decode [<drop-rate>]

You don’t have to worry that the files used for testing won’t fit in memory, i.e., you may assume
that the decoder, for example, can hold the contents of the encoded and decoded blocks in memory.
With that said, you should make sure that you can decode at least a 10MiB file.

2.6 Data Format

The remaining aspect that we need to specify is the wire format for the blocks. The data in the
blocks are to be written verbatim, and the fields in the block header are to be written in network
byte order.

The block format is simple: there is a header which specifies the file size and the block size (in case
this is the first block received by the encoder - remember, the encoder doesn’t know ahead of time
anything about the file it’s receiving). It also specifies the seed for the random number generator so
that the decoder can reconstruct the list of blocks that this block corresponds to. The data directly
follows the header. The format is as follows:

Block:
uint32_t fileSize;
uint32_t blockSize;
uint32_t blockSeed;
char data[blockSize];

Note that fileSize may not necessarily be a multiple of blockSize. Since all blocks are the same
size, this means that the final block may extend beyond the end of the file. In this case, it doesn’t

6

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

matter what data is stored in this part of the block, but it is vitally important that it be constant -
if the data changes over time, it invalidates the decoding scheme (since the data in the final block
may be used to XOR with other blocks). Given that the decoder knows the file size from the block
header, it is possible for the decoder to know where the actual file ends even if it does not end on a
block boundary. Though it would technically be possible to decode with a scheme that allows for
arbitrarily many junk blocks, it would be wasteful, and so we require that, if the file size is not a
multiple of the block size, only the final block contain junk data, and it is a multiple, there is no
junk data (and thus there are no extra blocks).

3 Handin

3.1 What to Hand In

Hand in your project by commit, pushing your git classroom repo before the due date and time.

4 Grading

4.1 Program - 90%

Most of your grade will be based on the correctness, performance, and style of your implementation.
Specifically:

1 Correctness - Your encoder and decoder must behave correctly. Given any combination of the
TA binaries and your binaries (ie, our encoder and your decoder, your encoder and our decoder,
or your encoder and your decoder), you must be able to correctly send and receive a file - the
output must identically reproduce the input. Additionally, given the same seed, your encoder
should produce exactly the same stream of blocks as our encoder. Given the same stream of
blocks, your decoder should decode in exactly the same number of blocks as our decoder.

2 Performance - Your programs must be reasonably performant. It must be possible to transfer a
10 MiB file between your binaries in a few seconds on a department machine (given a reasonable
block size).

3 Style - Your program must be reasonably designed, and your code must be clean and readable.

4.2 README -10%

Please include a README file with your program. Describe your algorithms for encoding and
decoding, and justify these design decisions. List any implementation details which you found
difficult to get correct, and describe how you accomplished this. Describe briefly the performance of
your encoder and decoder. Would it be possible to improve this performance? If so, what would be
easy or difficult about this change? List any known bugs, and any ideas about potential fixes.

7

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

References

[1] J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM Computer Communication Review, volume 28,
pages 56–67. ACM, 1998.

[2] D.J.C. MacKay. Information theory, inference, and learning algorithms. Cambridge Univ Pr,
2003.

[3] S. K. Park and K. W. Miller. Random number generators: good ones are hard to find. Commun.
ACM, 31:1192–1201, October 1988.

8

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

A Pseudo-random sequence

Table 1 shows a list of 96 numbers generated using the random number generator from Sec. 2.3,
starting with seed 2067261. Your implementation should generate the exact same sequence given
this seed.

384717275 2017463455 888985702 1138961335 2001411634 1688969677 1074515293
1188541828 2077102449 366694711 1907424534 448260522 541959578 1236480519
328830814 1184067167 2033402667 343865911 475872100 753283272 1015853439
953755623 952814553 168636592 1744271351 669331060 927782434 360607371
529232563 2081904114 1611383427 604985272 1799881606 1155500400 800602979
1749219598 82656156 1927577930 2011454515 828462531 1833275016 1905310403
1423282804 293742895 2019415459 1484062225 1758739317 1166783511 1457288620
598842305 1634250293 528829321 1747066761 407146696 1031620330 1807404079
884168938 1787987373 965105540 584824989 120937804 1082141766 517654719
766608236 1630224099 1580063467 343911067 1234808992 152763936 1260514187
535763254 174078107 858017135 341298340 272379243 1590285344 344306046
1430770104 1578742469 1764217798 901816857 2043818720 1460293275 1705955009
931665166 1193174685 484635109 2004287539 632181131 1466667008 1455103190
375542294 284896725 1518207912 119683330 1473033718 1086215810 270635523

Table 1: Sequence of 98 pseudo-random numbers generated by the algorithm described in Sec. 2.3
with initial seed of 2067261. Your implementation should generate the exact same sequence given
the same seed. (The sequence follows the rows in the table).

9

CS168 Project 5: Capstone Project: LT Codes 11:59 PM, Dec 07, 2017

B Degree distribution and source block sequence

Table 2 shows a sample of degree and list of sources for a sequence of encoded blocks. You should
be able to reproduce this list using your implementation, following Sec. 2.4.

Block seed d Source Blocks
166362120 1 98
634813345 2 400 62
177020911 2 49 385

1055302029 2 421 541
1364977754 12 336 109 412 410 463 231 319 564 417 305 313 461
1692838451 8 444 522 416 49 9 199 239 182
915510748 2 370 167

1536644533 2 458 555
980758720 8 236 557 326 25 418 154 230 346

1049939729 2 84 195
464738808 2 138 177

1622156932 4 109 43 446 250
667094411 33 201 291 424 197 401 108 38 85 382 401* 53 430 102 117 454 360 29 363 271

230 63 448 186 206 257 80 10 99 190 224 474 338 351 376
526649093 7 262 239 265 91 527 268 550
877036565 1 271

1891461182 2 19 566
1813567941 4 553 78 160 152
1687591223 6 240 385 542 394 465 539
886846905 9 380 345 290 31 273 79 416 108 288

1912570498 3 129 204 230
473728667 3 326 461 451

1321711281 2 439 181
706125047 2 127 144

Table 2: Given the seed on the left, the process outlined in Sec. 2.4 generates the degree d and the
list of integers on the right. The parameters are K = 571, c = 0.1, δ = 0.5, and the initial random
seed s = 166362120. Note that we did not omit duplicate entries in the list (those marked with a *,
so you can know the total number of calls to the random number generator), but you must skip
these entries when creating the list on your programs.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS168 document by filling out the anonymous feedback form:

https://piazza.com/brown/fall2017/cs168.

10

https://piazza.com/brown/fall2017/cs168

	Introduction
	Your Task
	Algorithm
	Robust Soliton Distribution
	Pseudo-Random Number Generation
	Encoding the List of Blocks
	Programs
	Data Format

	Handin
	What to Hand In

	Grading
	Program - 90%
	README -10%

	Pseudo-random sequence
	Degree distribution and source block sequence

