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Administrivia

• Homework 0:
– Sign and hand in Collaboration Policy
– Sign up for Piazza, Gradescope
– Send us your github account

• Signup for Snowcast milestone
– See Piazza for details

• Late days new policy
– 3 late days, 25% deduction per day after that
– Optimal allocation

• Capstone
– IP fragmentation
– TCP Congestion Control
– LT Codes



Today

• Review
– Switching, Multiplexing

• Layering and Encapsulation
• Intro to IP, TCP, UDP

• Extra material: sockets primer



Circuit Switching

• Guaranteed allocation
– Time division / Frequency division multiplexing

• Low space overhead
• Easy to reason about

• Failures: must re-establish connection
– For any failures along path

• Overload: all or nothing
– No graceful degradation

• Waste: allocate for peak, waste for less than peak
• Set up time



Packet Switching

• Break information in small chunks: packets
• Each packet forwarded independently

– Must add metadata to each packet
• Allows statistical multiplexing

– High utilization
– Very flexible
– Fairness not automatic
– Highly variable queueing delays
– Different paths for each packet
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Traceroute	map	of	the	Internet,	~5	million	edges,	circa	2003.	opte.org



Managing Complexity
• Very large number of computers
• Incredible variety of technologies

– Each with very different constraints
• No single administrative entity
• Evolving demands, protocols, applications

– Each with very different requirements!

• How do we make sense of all this?



Layering

• Separation of concerns
– Break problem into separate parts
– Solve each one independently
– Tie together through common interfaces: abstraction
– Encapsulate data from the layer above inside data 

from the layer below
– Allow independent evolution

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address



Analogy to Delivering a Letter



Layers

• Application – what the users sees, e.g., HTTP
• Presentation – crypto, conversion between 

representations
• Session – can tie together multiple streams 

(e.g., audio & video)
• Transport – demultiplexes, provides reliability, 

flow and congestion control
• Network – sends packets, using routing
• Data Link – sends frames, handles media access
• Physical – sends individual bits
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Layers, Services, Protocols

Layer	N
Protocol:	rules	for	communication
within	same	layer	

Layer	N-1

Layer	N+1

Service:	abstraction	provided	to	layer	above
API:	concrete	way	of	using	the	service

Layer	N	uses	the	services	provided	by	N-1	to
implement	its	protocol	and	provide	its	own	services



Layers, Services, Protocols
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Service:	move	bits	to	other	node	across	link	

Service:	move	frames	to	other	node	across	link.
May	add	reliability,	medium	access	control

Service:	move	packets	to	any	other	node	in	the	network
IP:	Unreliable,	best-effort	service	model

Service:	multiplexing	applications
Reliable	byte	stream	to	other	node	(TCP),	
Unreliable	datagram	(UDP)

Service:	user-facing	application.
Application-defined	messages



Protocols

• What do you need to communicate?
– Definition of message formats
– Definition of the semantics of messages
– Definition of valid sequences of messages

• Including valid timings

• Also, who do you talk to? …



Naming/Addressing

• Each node typically has a unique* name
– When that name also tells you how to get to the node, it is 

called an address
• Each layer can have its own naming/addressing
• Routing is the process of finding a path to the 

destination
– In packet switched networks, each packet must have a 

destination address
– For circuit switched, use address to set up circuit

• Special addresses can exist for 
broadcast/multicast/anycast

* within the relevant scope



Challenge
• Decide on how to factor the problem

– What services at which layer?
– What to leave out?
– More on this later (End-to-end principle)

• For example: 
– IP offers pretty crappy service, even on top of reliable 

links… why?
– TCP: offers reliable, in-order, no-duplicates service. 

Why would you want UDP?



IP as the Narrow Waist

• Many applications protocols on top of UDP & TCP
• IP works over many types of networks
• This is the “Hourglass” architecture of the 

Internet. 
– If every network supports IP, applications run over many 

different networks (e.g., cellular network)

…
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Network Layer: Internet Protocol (IP)

• Used by most computer networks today
– Runs over a variety of physical networks, can connect 

Ethernet, wireless, modem lines, etc.
• Every host has a unique 4-byte IP address (IPv4)

– E.g., www.cs.brown.edu à128.148.32.110
– The network knows how to route a packet to any address

• Need more to build something like the Web
– Need naming (DNS)
– Interface for browser and server software 
– Need demultiplexing within a host: which packets are for 

web browser, Skype, or the mail program?



Inter-process Communication

• Talking from host to host is great, but we want 
abstraction of inter-process communication

• Solution: encapsulate another protocol within IP
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Transport: UDP and TCP

• UDP and TCP most popular protocols on IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated 

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two 
processes anywhere on the network

– Handles congestion and flow control



Uses of TCP

• Most applications use TCP
– Easier to program (reliability is convenient)
– Automatically avoids congestion (don’t need to worry 

about taking down the network
• Servers typically listen on well-know ports:

– SSH: 22
– SMTP (email): 25
– Finger: 79
– HTTP (web): 80



Transport: UDP and TCP

• UDP and TCP most popular protocols on IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated 

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two 
processes anywhere on the network

– Handles congestion and flow control



Internet Layering

• Strict layering not required
– TCP/UDP “cheat” to detect certain errors in IP-level 

information like address
– Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application



• We didn’t cover these in class, but these 
concepts about the socket API are useful for, 
and exercised by, the Snowcast assignment!



Using TCP/IP

• How can applications use the network?
• Sockets API. 

– Originally from BSD, widely implemented (*BSD, Linux, 
Mac OS X, Windows, …)

– Important do know and do once
– Higher-level APIs build on them

• After basic setup, much like files



Sockets: Communication Between Machines

• Network sockets are file descriptors too
• Datagram sockets: unreliable message delivery

– With IP, gives you UDP
– Send atomic messages, which may be reordered or lost
– Special system calls to read/write: send/recv

• Stream sockets: bi-directional pipes
– With IP, gives you TCP
– Bytes written on one end read on another
– Reads may not return full amount requested, must re-read



System calls for using TCP

Client Server   
socket – make socket
bind – assign address, port
listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

accept – accept connection

• This call to bind is optional, connect can choose address & port.



Socket Naming
• Recall how TCP & UDP name communication 

endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22, 

http – 80, mail – 25, see /etc/services for list)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port
– TCP requires connected sockets, but not UDP



Dealing with Address Types

• All values in network byte order (Big Endian)
– htonl(), htons(): host to network, 32 and 16 bits
– ntohl(), ntohs(): network to host, 32 and 16 bits
– Remember to always convert!

• All address types begin with family
– sa_family in sockaddr tells you actual type

• Not all addresses are the same size
– e.g., struct sockaddr_in6 is typically 28 bytes, yet 

generic  struct sockaddr is only 16 bytes
– So most calls require passing around socket length
– New sockaddr_storage is big enough



Client Skeleton (IPv4)Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);



Server Skeleton (IPv4)Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}



Using UDP

• Call socket with SOCK_DGRAM, bind as before
• New calls for sending/receiving individual packets

– sendto(int s, const void *msg, int len, int flags, 
const struct sockaddr *to, socklen t tolen);

– recvfrom(int s, void *buf, int len, int flags, 
struct sockaddr *from, socklen t *fromlen);

– Must send/get peer address  with each packet
• Example: udpecho.c
• Can use UDP in connected mode (Why?)

– connect assigns remote address
– send/recv syscalls, like sendto/recvfrom w/o last two 

arguments



Uses of UDP Connected Sockets

• Kernel demultiplexes packets based on port
– Can have different processes getting UDP packets from 

different peers
• Feedback based on ICMP messages (future lecture)

– Say no process has bound UDP port you sent packet to
– Server sends port unreachable message, but you will only 

receive it when using connected socket



Serving Multiple Clients
• A server may block when talking to a client

– Read or write of a socket connected to a slow client 
can block

– Server may be busy with CPU
– Server might be blocked waiting for disk I/O

• Concurrency through multiple processes
– Accept, fork, close in parent; child services request

• Advantages of one process per client
– Don’t block on slow clients
– May use multiple cores
– Can keep disk queues full for disk-heavy workloads



Threads

• One process per client has disadvantages:
– High overhead – fork + exit ~100μsec
– Hard to share state across clients
– Maximum number of processes limited

• Can use threads for concurrency
– Data races and deadlocks make programming tricky
– Must allocate one stack per request
– Many thread implementations block on some I/O or 

have heavy thread-switch overhead
Rough equivalents to fork(), waitpid(), exit(), 
kill(), plus locking primitives.



Non-blocking I/O

• fcntl sets O_NONBLOCK flag on descriptor
int n;
if ((n = fcntl(s, F_GETFL)) >= 0)

fcntl(s, F_SETFL, n|O_NONBLOCK);

• Non-blocking semantics of system calls:
– read immediately returns -1 with errno EAGAIN if no data
– write may not write all data, or may return EAGAIN
– connect may fail with EINPROGRESS (or may succeed, or 

may fail with a real error like ECONNREFUSED)
– accept may fail with EAGAIN or EWOULDBLOCK if no 

connections present to be accepted



How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

How do you know when to read/write?

• Entire program runs in an event loop



Event-driven servers

• Quite different from processes/threads
– Race conditions, deadlocks rare
– Often more efficient

• But…
– Unusual programming model
– Sometimes difficult to avoid blocking
– Scaling to more CPUs is more complex



Coming Up

• Next class: Physical Layer
• Thu 14th: Snowcast milestones


