
CSCI-1680
Layering and Encapsulation

Based	partly	on	lecture	notes	by	David	Mazières,	Phil	Levis,	John	Jannotti

Rodrigo Fonseca

Administrivia

• Homework 0:
– Sign and hand in Collaboration Policy
– Sign up for Piazza, Gradescope
– Send us your github account

• Signup for Snowcast milestone
– See Piazza for details

• Late days new policy
– 3 late days, 25% deduction per day after that
– Optimal allocation

• Capstone
– IP fragmentation
– TCP Congestion Control
– LT Codes

Today

• Review
– Switching, Multiplexing

• Layering and Encapsulation
• Intro to IP, TCP, UDP

• Extra material: sockets primer

Circuit Switching

• Guaranteed allocation
– Time division / Frequency division multiplexing

• Low space overhead
• Easy to reason about

• Failures: must re-establish connection
– For any failures along path

• Overload: all or nothing
– No graceful degradation

• Waste: allocate for peak, waste for less than peak
• Set up time

Packet Switching

• Break information in small chunks: packets
• Each packet forwarded independently

– Must add metadata to each packet
• Allows statistical multiplexing

– High utilization
– Very flexible
– Fairness not automatic
– Highly variable queueing delays
– Different paths for each packet

A Taxonomy of networks

Communication
Network

Switched
Communication

Network

Broadcast
Communication

Network

Circuit-Switched
Communication

Network

Packet-Switched
Communication

Network

Datagram
Network

Virtual Circuit Network

A hybrid of circuits and packets;
headers include a “circuit

identifier” established during a
setup phase

Point-to-point network

Traceroute	map	of	the	Internet,	~5	million	edges,	circa	2003.	opte.org

Managing Complexity
• Very large number of computers
• Incredible variety of technologies

– Each with very different constraints
• No single administrative entity
• Evolving demands, protocols, applications

– Each with very different requirements!

• How do we make sense of all this?

Layering

• Separation of concerns
– Break problem into separate parts
– Solve each one independently
– Tie together through common interfaces: abstraction
– Encapsulate data from the layer above inside data

from the layer below
– Allow independent evolution

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Analogy to Delivering a Letter

Layers

• Application – what the users sees, e.g., HTTP
• Presentation – crypto, conversion between

representations
• Session – can tie together multiple streams

(e.g., audio & video)
• Transport – demultiplexes, provides reliability,

flow and congestion control
• Network – sends packets, using routing
• Data Link – sends frames, handles media access
• Physical – sends individual bits

OSI Reference Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application	Protocol

Transport	Protocol

Network	Protocol

Link-Layer	Protocol

Layers, Services, Protocols

Layer	N
Protocol:	rules	for	communication
within	same	layer	

Layer	N-1

Layer	N+1

Service:	abstraction	provided	to	layer	above
API:	concrete	way	of	using	the	service

Layer	N	uses	the	services	provided	by	N-1	to
implement	its	protocol	and	provide	its	own	services

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service:	move	bits	to	other	node	across	link	

Service:	move	frames	to	other	node	across	link.
May	add	reliability,	medium	access	control

Service:	move	packets	to	any	other	node	in	the	network
IP:	Unreliable,	best-effort	service	model

Service:	multiplexing	applications
Reliable	byte	stream	to	other	node	(TCP),	
Unreliable	datagram	(UDP)

Service:	user-facing	application.
Application-defined	messages

Protocols

• What do you need to communicate?
– Definition of message formats
– Definition of the semantics of messages
– Definition of valid sequences of messages

• Including valid timings

• Also, who do you talk to? …

Naming/Addressing

• Each node typically has a unique* name
– When that name also tells you how to get to the node, it is

called an address
• Each layer can have its own naming/addressing
• Routing is the process of finding a path to the

destination
– In packet switched networks, each packet must have a

destination address
– For circuit switched, use address to set up circuit

• Special addresses can exist for
broadcast/multicast/anycast

* within the relevant scope

Challenge
• Decide on how to factor the problem

– What services at which layer?
– What to leave out?
– More on this later (End-to-end principle)

• For example:
– IP offers pretty crappy service, even on top of reliable

links… why?
– TCP: offers reliable, in-order, no-duplicates service.

Why would you want UDP?

IP as the Narrow Waist

• Many applications protocols on top of UDP & TCP
• IP works over many types of networks
• This is the “Hourglass” architecture of the

Internet.
– If every network supports IP, applications run over many

different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Network Layer: Internet Protocol (IP)

• Used by most computer networks today
– Runs over a variety of physical networks, can connect

Ethernet, wireless, modem lines, etc.
• Every host has a unique 4-byte IP address (IPv4)

– E.g., www.cs.brown.edu à128.148.32.110
– The network knows how to route a packet to any address

• Need more to build something like the Web
– Need naming (DNS)
– Interface for browser and server software
– Need demultiplexing within a host: which packets are for

web browser, Skype, or the mail program?

Inter-process Communication

• Talking from host to host is great, but we want
abstraction of inter-process communication

• Solution: encapsulate another protocol within IP

Host

HostHost

Channel

Application

Host

Application

Host

Transport: UDP and TCP

• UDP and TCP most popular protocols on IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two
processes anywhere on the network

– Handles congestion and flow control

Uses of TCP

• Most applications use TCP
– Easier to program (reliability is convenient)
– Automatically avoids congestion (don’t need to worry

about taking down the network
• Servers typically listen on well-know ports:

– SSH: 22
– SMTP (email): 25
– Finger: 79
– HTTP (web): 80

Transport: UDP and TCP

• UDP and TCP most popular protocols on IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two
processes anywhere on the network

– Handles congestion and flow control

Internet Layering

• Strict layering not required
– TCP/UDP “cheat” to detect certain errors in IP-level

information like address
– Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application

• We didn’t cover these in class, but these
concepts about the socket API are useful for,
and exercised by, the Snowcast assignment!

Using TCP/IP

• How can applications use the network?
• Sockets API.

– Originally from BSD, widely implemented (*BSD, Linux,
Mac OS X, Windows, …)

– Important do know and do once
– Higher-level APIs build on them

• After basic setup, much like files

Sockets: Communication Between Machines

• Network sockets are file descriptors too
• Datagram sockets: unreliable message delivery

– With IP, gives you UDP
– Send atomic messages, which may be reordered or lost
– Special system calls to read/write: send/recv

• Stream sockets: bi-directional pipes
– With IP, gives you TCP
– Bytes written on one end read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
socket – make socket
bind – assign address, port
listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming
• Recall how TCP & UDP name communication

endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22,

http – 80, mail – 25, see /etc/services for list)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port
– TCP requires connected sockets, but not UDP

Dealing with Address Types

• All values in network byte order (Big Endian)
– htonl(), htons(): host to network, 32 and 16 bits
– ntohl(), ntohs(): network to host, 32 and 16 bits
– Remember to always convert!

• All address types begin with family
– sa_family in sockaddr tells you actual type

• Not all addresses are the same size
– e.g., struct sockaddr_in6 is typically 28 bytes, yet

generic struct sockaddr is only 16 bytes
– So most calls require passing around socket length
– New sockaddr_storage is big enough

Client Skeleton (IPv4)Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);

Server Skeleton (IPv4)Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}

Using UDP

• Call socket with SOCK_DGRAM, bind as before
• New calls for sending/receiving individual packets

– sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);

– recvfrom(int s, void *buf, int len, int flags,
struct sockaddr *from, socklen t *fromlen);

– Must send/get peer address with each packet
• Example: udpecho.c
• Can use UDP in connected mode (Why?)

– connect assigns remote address
– send/recv syscalls, like sendto/recvfrom w/o last two

arguments

Uses of UDP Connected Sockets

• Kernel demultiplexes packets based on port
– Can have different processes getting UDP packets from

different peers
• Feedback based on ICMP messages (future lecture)

– Say no process has bound UDP port you sent packet to
– Server sends port unreachable message, but you will only

receive it when using connected socket

Serving Multiple Clients
• A server may block when talking to a client

– Read or write of a socket connected to a slow client
can block

– Server may be busy with CPU
– Server might be blocked waiting for disk I/O

• Concurrency through multiple processes
– Accept, fork, close in parent; child services request

• Advantages of one process per client
– Don’t block on slow clients
– May use multiple cores
– Can keep disk queues full for disk-heavy workloads

Threads

• One process per client has disadvantages:
– High overhead – fork + exit ~100μsec
– Hard to share state across clients
– Maximum number of processes limited

• Can use threads for concurrency
– Data races and deadlocks make programming tricky
– Must allocate one stack per request
– Many thread implementations block on some I/O or

have heavy thread-switch overhead
Rough equivalents to fork(), waitpid(), exit(),
kill(), plus locking primitives.

Non-blocking I/O

• fcntl sets O_NONBLOCK flag on descriptor
int n;
if ((n = fcntl(s, F_GETFL)) >= 0)

fcntl(s, F_SETFL, n|O_NONBLOCK);

• Non-blocking semantics of system calls:
– read immediately returns -1 with errno EAGAIN if no data
– write may not write all data, or may return EAGAIN
– connect may fail with EINPROGRESS (or may succeed, or

may fail with a real error like ECONNREFUSED)
– accept may fail with EAGAIN or EWOULDBLOCK if no

connections present to be accepted

How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

How do you know when to read/write?

• Entire program runs in an event loop

Event-driven servers

• Quite different from processes/threads
– Race conditions, deadlocks rare
– Often more efficient

• But…
– Unusual programming model
– Sometimes difficult to avoid blocking
– Scaling to more CPUs is more complex

Coming Up

• Next class: Physical Layer
• Thu 14th: Snowcast milestones

