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•  Introduction to TCP 
–  Header format 
–  Connection state diagram 

•  Today: sending data  



First Goal 

•  We should not send more data than the receiver 
can take: flow control 

•  When to send data? 
–  Sender can delay sends to get larger segments 

•  How much data to send? 
–  Data is sent in MSS-sized segments 

•  Chosen to avoid fragmentation 



Flow Control 

•  Part of TCP specification (even before 1988) 
•  Receiver uses window header field to tell sender 

how much space it has 



Flow Control 

•  Receiver: AdvertisedWindow  
     = MaxRcvBuffer – ((NextByteExpected-1) – LastByteRead) 

•  Sender: LastByteSent – LastByteAcked <= AdvertisedWindow 
  EffectiveWindow = AdvertisedWindow – (BytesInFlight) 
   LastByteWritten – LastByteAcked <= MaxSendBuffer 

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)



Flow Control 

•  Advertised window can fall to 0 
–  How? 
–  Sender eventually stops sending, blocks application 

•  Sender keeps sending 1-byte segments until window 
comes back > 0 

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)



When to Transmit? 
•  Nagle’s algorithm 
•  Goal: reduce the overhead of small packets 

If available data and window >= MSS 
 Send a MSS segment 

else 
 If there is unAcked data in flight 
   buffer the new data until ACK arrives 
 else 
   send all the new data now 

•  Receiver should avoid advertising a window <= 
MSS after advertising a window of 0 



Delayed Acknowledgments 

•  Goal: Piggy-back ACKs on data 
–  Delay ACK for 200ms in case application sends data 
–  If more data received, immediately ACK second 

segment 
–  Note: never delay duplicate ACKs (if missing a 

segment) 
•  Warning: can interact very badly with Nagle 

–  Temporary deadlock 
–  Can disable Nagle with TCP_NODELAY 
–  Application can also avoid many small writes 



Limitations of Flow Control 

•  Network may be the bottleneck 
•  Signal from receiver not enough! 
•  Sending too fast will cause queue overflows, 

heavy packet loss 
•  Flow control provides correctness 
•  Need more for performance: congestion 

control 



Second goal 

•  We should not send more data than the 
network can take: congestion control 



A Short History of TCP 

•  1974: 3-way handshake 
•  1978: IP and TCP split 
•  1983: January 1st, ARPAnet switches to TCP/IP 
•  1984: Nagle predicts congestion collapses 
•  1986: Internet begins to suffer congestion collapses 
–  LBL to Berkeley drops from 32Kbps to 40bps 

•  1987/8: Van Jacobson fixes TCP, publishes seminal     
  paper*: (TCP Tahoe) 

•  1990: Fast transmit and fast recovery added  
 (TCP Reno) 

*	
  Van	
  Jacobson.	
  CongesBon	
  avoidance	
  and	
  control.	
  SIGCOMM	
  ’88	
  



Congestion Collapse 
Nagle, rfc896, 1984 

•  Mid 1980’s. Problem with the protocol 
implementations, not the protocol! 

•  What was happening? 
–  Load on the network à buffers at routers fill up à 

round trip time increases 
•  If close to capacity, and, e.g., a large flow 

arrives suddenly… 
–  RTT estimates become too short 
–  Lots of retransmissions à increase in queue size 
–  Eventually many drops happen (full queues) 
–  Fraction of useful packets (not copies) decreases 



TCP Congestion Control 

•  3 Key Challenges 
–  Determining the available capacity in the first place 
–  Adjusting to changes in the available capacity 
–  Sharing capacity between flows 

•  Idea 
–  Each source determines network capacity for itself 
–  Rate is determined by window size 
–  Uses implicit feedback (drops, delay) 
–  ACKs pace transmission (self-clocking) 



Dealing with Congestion 

•  TCP keeps congestion and flow control windows 
–  Max packets in flight is lesser of two 

•  Sending rate: ~Window/RTT 
•  The key here is how to set the congestion 

window to respond to congestion signals 



Dealing with Congestion 

•  Assume losses are due to congestion 
•  After a loss, reduce congestion window 
–  How much to reduce?   

•  Idea: conservation of packets at equilibrium 
–  Want to keep roughly the same number of packets in network 
–  Analogy with water in fixed-size pipe 
–  Put new packet into network when one exits 



How much to reduce window? 

•  Crude model of the network 
–  Let Li be the load (# pkts) in the network at time I 
–  If network uncongested, roughly constant Li = N 

•  What happens under congestion? 
–  Some fraction γ of packets can’t exit the network 
–  Now Li = N + γLi-1, or Li ≈ giL0 

–  Exponential increase in congestion 
•  Sources must decrease offered rate exponentially 
–  i.e, multiplicative decrease in window size 
–  TCP chooses to cut window in half 



How to use extra capacity? 

•  Network signals congestion, but says nothing of 
underutilization 
–  Senders constantly try to send faster, see if it works 
–  So, increase window if no losses… By how much? 

•  Multiplicative increase? 
–  Easier to saturate the network than to recover 
–  Too fast, will lead to saturation, wild fluctuations 

•  Additive increase? 
–  Won’t saturate the network 
–  Remember fairness (third challenge)?  
 



Chiu Jain Phase Plots 
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Chiu Jain Phase Plots 
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AIMD Implementation 

•  In practice, send MSS-sized segments 
–  Let window size in bytes be w (a multiple of MSS) 

•  Increase: 
–  After w bytes ACKed, could set w = w + MSS 
–  Smoother to increment on each ACK 

•  w = w + MSS * MSS/w 
•  (receive w/MSS ACKs per RTT, increase by MSS/(w/MSS) for 

each) 

•  Decrease: 
–  After a packet loss, w = w/2 
–  But don’t want w < MSS 
–  So react differently to multiple consecutive losses 
–  Back off exponentially (pause with no packets in flight) 



AIMD Trace 

•  AIMD produces sawtooth pattern of window 
size 
–  Always probing available bandwidth 

AIMD trace

• Window trace produces sawtooth pattern:
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Starting Up 

•  Before TCP Tahoe 
–  On connection, nodes send full (rcv) window of packets 
–  Retransmit packet immediately after its timer expires 

•  Result: window-sized bursts of packets in network 



Bursts of Packets 
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Figure 3: Startup behavior of TCP without Slow-start
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Trace data of the start of a TCP conversation between two Sun 3/50s running Sun OS 3.5
(the 4.3BSD TCP). The two Suns were on different Ethernets connected by IP gateways
driving a 230.4 Kbps point-to-point link (essentially the setup shown in fig. 7). The win-
dow size for the connection was 16KB (32 512-byte packets) and there were 30 packets of
buffer available at the bottleneck gateway. The actual path contains six store-and-forward
hops so the pipe plus gateway queue has enough capacity for a full window but the gateway
queue alone does not.
Each dot is a 512 data-byte packet. The x-axis is the time the packet was sent. The y-
axis is the sequence number in the packet header. Thus a vertical array of dots indicate
back-to-back packets and two dots with the same y but different x indicate a retransmit.
‘Desirable’ behavior on this graph would be a relatively smooth line of dots extending
diagonally from the lower left to the upper right. The slope of this line would equal the
available bandwidth. Nothing in this trace resembles desirable behavior.
The dashed line shows the 20 KBps bandwidth available for this connection. Only 35%
of this bandwidth was used; the rest was wasted on retransmits. Almost everything is
retransmitted at least once and data from 54 to 58 KB is sent five times.

first-hop gateway sees a burst of eight packets delivered at 200 times the path bandwidth.
This burst of packets often puts the connection into a persistent failure mode of continuous
retransmissions (figures 3 and 4).

2 Conservation at equilibrium: round-trip timing

Once data is flowing reliably, problems (2) and (3) should be addressed. Assuming that
the protocol implementation is correct, (2) must represent a failure of sender’s retransmit
timer. A good round trip time estimator, the core of the retransmit timer, is the single most

Graph	
  from	
  Van	
  Jacobson	
  and	
  Karels,	
  1988	
  



Determining Initial Capacity 

•  Question: how do we set w initially? 
–  Should start at 1MSS (to avoid overloading the network) 
–  Could increase additively until we hit congestion 
–  May be too slow on fast network 

•  Start by doubling w each RTT 
– Then will dump at most one extra window into network 
– This is called slow start 

•  Slow start, this sounds quite fast! 
–  In contrast to initial algorithm: sender would dump entire 
flow control window at once 



Startup behavior with Slow Start 
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Figure 4: Startup behavior of TCP with Slow-start
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Same conditions as the previous figure (same time of day, same Suns, same network path,
same buffer and window sizes), except the machines were running the 4.3+TCP with slow-
start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start
so the effective bandwidth of this part of the trace is 16 KBps — two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is
20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., if this
trace had run a minute, the effective bandwidth would have been 19 KBps. The effective
bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

important feature of any protocol implementation that expects to survive heavy load. And
it is frequently botched ([26] and [13] describe typical problems).

One mistake is not estimating the variation, !R, of the round trip time, R. From queuing
theory we know that R and the variation in R increase quickly with load. If the load is "
(the ratio of average arrival rate to average departure rate), R and !R scale like (1−")−1.
To make this concrete, if the network is running at 75% of capacity, as the Arpanet was in
last April’s collapse, one should expect round-trip-time to vary by a factor of sixteen (−2!
to +2!).

The TCP protocol specification[2] suggests estimating mean round trip time via the low-
pass filter

R← #R+(1−#)M

where R is the average RTT estimate, M is a round trip time measurement from the most
recently acked data packet, and # is a filter gain constant with a suggested value of 0.9.
Once the R estimate is updated, the retransmit timeout interval, rto, for the next packet sent
is set to $R.



Slow start implementation 

•  Let w be the size of the window in bytes 
–  We have w/MSS segments per RTT 

•  We are doubling w after each RTT 
–  We receive w/MSS ACKs each RTT 
–  So we can set w = w + MSS on every ACK 

•  At some point we hit the network limit. 
–  Experience loss 
–  We are at most one window size above the limit 
–  Remember window size (ssthreah) and reduce 

window 



Putting it together 

•  TCP has two states: Slow Start (SS) and Congestion 
Avoidance (CA) 

•  A window size threshold governs the state transition 
–  Window <= threshold: SS 
–  Window > threshold: congestion avoidance 

•  States differ in how they respond to ACKs 
–  Slow start: w = w + MSS 
–  Congestion Avoidance: w = w + MSS2/w (1 MSS per RTT) 

•  On loss event: set w = 1, slow start 



How to Detect Loss 

•  Timeout 
•  Any other way? 

–  Gap in sequence numbers at receiver 
–  Receiver uses cumulative ACKs: drops => duplicate 

ACKs 
•  3 Duplicate ACKs considered loss 

•  Which one is worse? 



Putting it all together 
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RTT  

•  We want an estimate of RTT so we can know a packet 
was likely lost, and not just delayed 

•  Key for correct operation 
•  Challenge: RTT can be highly variable 
–  Both at long and short time scales! 

•  Both average and variance increase a lot with load 
•  Solution 
–  Use exponentially weighted moving average (EWMA) 
–  Estimate deviation as well as expected value 
–  Assume packet is lost when time is well beyond reasonable 

deviation 



Originally 

•  EstRTT = (1 – α) × EstRTT + α × SampleRTT 
•  Timeout = 2 × EstRTT 
•  Problem 1:  

–  in case of retransmission, ack corresponds to which send? 
–  Solution: only sample for segments with no retransmission 

•  Problem 2: 
–  does not take variance into account: too aggressive when 

there is more load! 



Jacobson/Karels Algorithm (Tahoe) 

•  EstRTT = (1 – α) × EstRTT +  α × SampleRTT 
–  Recommended α is 0.125 

•  DevRTT = (1 – β) × DevRTT + β | SampleRTT – EstRTT | 
–  Recommended β is 0.25 

•  Timeout = EstRTT + 4 DevRTT 
•  For successive retransmissions: use exponential 

backoff 



Old RTT Estimation 
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Figure 5: Performance of an RFC793 retransmit timer
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Trace data showing per-packet round trip time on a well-behavedArpanet connection. The
x-axis is the packet number (packets were numbered sequentially, starting with one) and
the y-axis is the elapsed time from the send of the packet to the sender’s receipt of its ack.
During this portion of the trace, no packets were dropped or retransmitted.
The packets are indicated by a dot. A dashed line connects them to make the sequence eas-
ier to follow. The solid line shows the behavior of a retransmit timer computed according
to the rules of RFC793.

The parameter ! accounts for RTT variation (see [5], section 5). The suggested ! = 2
can adapt to loads of at most 30%. Above this point, a connection will respond to load
increases by retransmitting packets that have only been delayed in transit. This forces the
network to do useless work, wasting bandwidth on duplicates of packets that will eventually
be delivered, at a time when it’s known to be having trouble with useful work. I.e., this is
the network equivalent of pouring gasoline on a fire.

We developed a cheap method for estimating variation (see appendix A)3 and the re-
sulting retransmit timer essentially eliminates spurious retransmissions. A pleasant side
effect of estimating ! rather than using a fixed value is that low load as well as high load
performance improves, particularly over high delay paths such as satellite links (figures 5
and 6).

Another timer mistake is in the backoff after a retransmit: If a packet has to be retrans-
mitted more than once, how should the retransmits be spaced? For a transport endpoint
embedded in a network of unknown topology and with an unknown, unknowable and con-
stantly changing population of competing conversations, only one scheme has any hope
of working—exponential backoff—but a proof of this is beyond the scope of this paper.4

3We are far from the first to recognize that transport needs to estimate both mean and variation. See, for
example, [6]. But we do think our estimator is simpler than most.

4See [8]. Several authors have shown that backoffs ‘slower’ than exponential are stable given finite popula-
tions and knowledge of the global traffic. However, [17] shows that nothing slower than exponential behavior
will work in the general case. To feed your intuition, consider that an IP gateway has essentially the same
behavior as the ‘ether’ in an ALOHA net or Ethernet. Justifying exponential retransmit backoff is the same as



Tahoe RTT Estimation 
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Figure 6: Performance of a Mean+Variance retransmit timer
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Same data as above but the solid line shows a retransmit timer computed according to the
algorithm in appendix A.

To finesse a proof, note that a network is, to a very good approximation, a linear system.
That is, it is composed of elements that behave like linear operators — integrators, delays,
gain stages, etc. Linear system theory says that if a system is stable, the stability is expo-
nential. This suggests that an unstable system (a network subject to random load shocks
and prone to congestive collapse5) can be stabilized by adding some exponential damping
(exponential timer backoff) to its primary excitation (senders, traffic sources).

3 Adapting to the path: congestion avoidance

If the timers are in good shape, it is possible to state with some confidence that a timeout in-
dicates a lost packet and not a broken timer. At this point, something can be done about (3).
Packets get lost for two reasons: they are damaged in transit, or the network is congested
and somewhere on the path there was insufficient buffer capacity. On most network paths,
loss due to damage is rare (≪1%) so it is probable that a packet loss is due to congestion in
the network.6

showing that no collision backoff slower than an exponential will guarantee stability on an Ethernet. Unfortu-
nately, with an infinite user population even exponential backoff won’t guarantee stability (although it ‘almost’
does—see [1]). Fortunately, we don’t (yet) have to deal with an infinite user population.

5The phrase congestion collapse (describing a positive feedback instability due to poor retransmit timers) is
again the coinage of John Nagle, this time from [23].

6Because a packet loss empties the window, the throughput of any window flow control protocol is quite
sensitive to damage loss. For an RFC793 standard TCP running with window w (where w is at most the
bandwidth-delay product), a loss probability of p degrades throughput by a factor of (1+2pw)−1. E.g., a 1%
damage loss rate on an Arpanet path (8 packet window) degrades TCP throughput by 14%.
The congestion control scheme we propose is insensitive to damage loss until the loss rate is on the order of

the window equilibration length (the number of packets it takes the window to regain its original size after a
loss). If the pre-loss size is w, equilibration takes roughly w2/3 packets so, for the Arpanet, the loss sensitivity



Slow start every time?! 

•  Losses have large effect on throughput 
•  Fast Recovery (TCP Reno) 
–  Same as TCP Tahoe on Timeout: w = 1, slow start 
–  On triple duplicate ACKs: w = w/2 
–  Retransmit missing segment (fast retransmit) 
–  Stay in Congestion Avoidance mode 



Fast Recovery and Fast Retransmit 
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3 Challenges Revisited 

•  Determining the available capacity in the first 
place 
–  Exponential increase in congestion window 

•  Adjusting to changes in the available capacity 
–  Slow probing, AIMD 

•  Sharing capacity between flows 
–  AIMD 

•  Detecting Congestion 
–  Timeout based on RTT 
–  Triple duplicate acknowledgments 

•  Fast retransmit/Fast recovery 
–  Reduces slow starts, timeouts 



Next Class 

•  More Congestion Control fun 
•  Cheating on TCP 
•  TCP on extreme conditions 
•  TCP Friendliness 
•  TCP Future 
 


