CSCI-1680
Transport Layer I11
Congestion Control Strikes Back

Rodrigo Fonseca

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti, lon Stoica

Last Time

 Flow Control

* Congestion Control

Today

More TCP Fun!

Congestion Control Continued

— Quick Review
— RTT Estimation

TCP Friendliness
— Equation Based Rate Control

TCP on Lossy Links

Congestion Control versus Avoidance
— Getting help from the network

Cheating TCP

Quick Review

 Flow Control:
— Receiver sets Advertised Window

* Congestion Control
— Two states: Slow Start (SS) and Congestion Avoidance
(CA)
— A window size threshold governs the state transition

* Window <= ssthresh: SS
* Window > ssthresh: Congestion Avoidance

— States differ in how they respond to ACKs

 Slow start: +1 w per RTT (Exponential increase)
* Congestion Avoidance: +1 MSS per RTT (Additive increase)

— On loss event: set ssthresh = w/2, w = 1, slow start

AIMD

Fair: A=B
AIMD

Flow Rate B

Efficient: A+B =C
>

Flow Rate A

States differ in how they respond to acks

* Slow start: double w in one RTT
— There are w/MSS segments (and acks) per RTT

— Increase w per RTT = how much to increase per
ack?
* w/ (wW/MSS) = MSS

 AIMD: Add 1 MSS per RTT
— MSS/(w/MSS) = MSS?/w per received ACK

cwnd

Putting it all together

Timeout

Timeout

AIMD

ssthresh —

|

_

AIMD

/

Slow
Start

Slow
Start

Slow
Start

Time

\ 4

Fast Recovery and Fast Retransmit

cwnd

Al/MD

Slow Start <|/l/

Fast retransmit

Time

TCP Friendliness

* Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app using
UDP, how to do congestion control?

—

1 UDP Flow at 10MBps
31 TCP Flows
Sharing a 10MBps link

Throughput(Mbps)
O =~ NN WO b O OO N 00 © O

\\ﬁ\\\\\\\\\\\\\\\\\\\\\

1 4 7 10 13 16 19 22 25 28 31
Flow Number

TCP Friendliness

* Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app using
UDP, how to do congestion control?

* Equation-based Congestion Control

— Instead of implementing TCP’s CC, estimate the rate
at which TCP would send. Function of what?

— RTT, MSS, Loss
e Measure RTT, Loss, send at that rate!

TCP Throughput

Assume a TCP congestion of window W (segments),
round-trip time of RTT, segment size MSS

— Sending Rate S = Wx MSS/ RTT (1)
Drop: W =W/2

— grows by MSS for W/2 RTTs, until another drop at W = W
Average window then 0.75xS$

— From (1),$=0.75 WMSS/RTT (2)

Loss rate is 1 in number of packets between losses:

— Loss=1/(1+(W/2+ W/2+1+ W/2+2 +...+ W)
=1/(3/8 W?) (3)

TCP Throughput (cont)

8
3- Loss

— Loss =8/(3W?) =W = (4)

— Substituting (4) in (2), S=0.75 WMSS/ RTT,

MSS

RTT- A/ Loss

Throughput = 122 x

* Equation-based rate control can be TCP friendly and have better
properties, e.g., small jitter, fast ramp-up...

What Happens When Link is Lossy?

* Throughput = 1/ sqrt(Loss)

©
Il
o

60

Y Y I Y Y I Y Y

AN
. //////////////////p=1°/°
TZ N M A l“ul AV/p_lo/o

/ WW”'MW‘"W’WVA‘W ”M’my

1 26 51 76 101126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

0 -

What can we do about it?

* Two types of losses: congestion and corruption

* One option: mask corruption losses from TCP
— Retransmissions at the link layer

— E.g. Snoop TCP: intercept duplicate
acknowledgments, retransmit locally, filter them from
the sender

* Another option:
— Tell the sender about the cause for the drop
— Requires modification to the TCP endpoints

Congestion Avoidance

* TCP creates congestion to then back off

— Queues at bottleneck link are often full: increased delay

— Sawtooth pattern: jitter
* Alternative strategy
— Predict when congestion is about to happen
— Reduce rate early
* Other approaches
— Delay Based: TCP Vegas (not covered)

— Better model of congestion: BBR
— Router-centric: RED, ECN, DECBit, DCTCP

Another view of Congestion Control

»

Round Trip Time

Throughput

A 4

Tput =
InFlight/

RTTorop

v

Bytes in Flight

™

()

Nad

Diagrams based on Cardwell et al., BBR: Congestion Based Congestion Control,”

Communications of the ACM, Vol. 60 No. 2, Pages 58-66.

Another view of Congestion Control

Q

-

=

o

=

©

C

>

o)

o

Bytes in Flight

45 A 1 1
o 1 I
< BDP! Bottleneck BW :
3 i
< i
= !

Bytes in Flight

O

Another view of Congestion Control

»

A

Round Trip Time

A 4

Bytes in Flight

»

Bottleneck BW

Throughput

o

P Bytes in Flight BDP+BottIenec'

Queue
T

Another view of Congestion Control

Ideal .
Operating Poiht

»
>

Loss-based CC

Round Trip Time

A 4

Bytes in Flight

»
>

Bottleneck BW

Throughput

o

BDP Bytesin Flight BDP+Bottlenecl
Queue

BBR

* Problem: can’t measure both RTT ,,,, and
Bottleneck BW at the same time

 BBR:

— Slow start

— Measure throughput when RTT starts to increase
— Measure RTT when throughput is still increasing
— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to
compensate

160 T T T T T T T T T

) Af /_A/A

Link Capacity

o 100 |
&
o
£
e 80 |- i
3 /
5
60 |- i
40 + i
20 - ReN0 mmmm
CUBIC s
BBR wws
0 |]] 1] | 1 |
0 10 20 30 40 50 60 70 80 90 100

Time

From: https://labs.ripe.net/Members/gih/bbr-tcp

TCP Vegas

* Idea: source watches for sign that router’s queue is building
up (e.g., sending rate flattens)

KB

|

T T T T T T T | | | T T T T |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 45 50 55 60 65 70 7.5 8.0 8.5
Time (seconds)

1100

2900
M 700
g 5004
300 -
100 -

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

W et

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

Sending

Queue size in router

TCP Vegas
* Compare Actual Rate (A) with Expected Rate (E)

— If E-A > P, decrease cwnd linearly : A isn’t responding
— If E-A < q, increase cwnd linearly : Room for A to grow

70 = LT W FEEEEEEEEEEEEEEEEEEEE PR A DR FEERCE RO FERUEE DR FEROEECOVERE FRRUE PO DUORD FEERUOTEROEEEIROLE TOOUEEECOTEREE ORI CNRRNE OO OO0 O POURUTEEOEEREERE TEPEE RO TR CPRREREER DO v
60
50
40
30
20 4
10

KB

T T T T T T T T T T T T T T T
0.5 10 1.5 20 25 3.0 35 40 45 50 55 60 65 70 7.5 8.0

Time (seconds)

240 -
200
2160 -
2120
80 ~
40 -

T T T T T T T T T T T T T T T 1
0.5 10 1.5 2.0 25 3.0 3.5 40 45 50 55 60 65 70 7.5 8.0
Time (seconds)

Vegas

* Shorter router queues
* Lower jitter

* Problem:
— Doesn’t compete well with Reno. Why?

— Reacts earlier, Reno is more aggressive, ends up with

higher bandwidth...

Help from the network

* What if routers could tell TCP that congestion
is happening?
— Congestion causes queues to grow: rate mismatch

* TCP responds to drops
* Idea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop
packet with some probability that increases with
queue length

— TCP will react by reducing cwnd
— Could also mark instead of dropping: ECN

RED Details

* Compute average queue length (EWMA)

— Don’t want to react to very quick fluctuations

Queue length
A

Instantaneous

\

\\

Average

Time
-

RED Drop Probability

 Define two thresholds: MinThresh, MaxThresh
* Drop probability:

P(drop)
A

1.0 -

MaxP
/ AvglLen
' >

MinThresh MaxThresh

* Improvements to spread drops (see book)

RED Advantages

Probability of dropping a packet of a particular
flow is roughly proportional to the share of the
bandwidth that flow is currently getting

Higher network utilization with low delays

Average queue length small, but can absorb
bursts

ECN
— Similar to RED, but router sets bit in the packet
— Must be supported by both ends

— Avoids retransmissions optionally dropped packets

What happens if not everyone cooperates?

* TCP works extremely well when its
assumptions are valid
— All flows correctly implement congestion control

— Losses are due to congestion

Cheating TCP

* Possible ways to cheat
— Increasing cwnd faster
— Large initial cwnd

— Opening many connections
— Ack Division Attack

Increasing cwnd Faster

C N Y
\
AN x increases by 2 per RTT
o/(\ y increases by 1 per RTT

Figure from Walrand, Berkeley EECS 122, 2003

Larger Initial Window

X
Ar—m B
D [
x starts SS with cwnd =4

y starts SS Wiéth cwnd =1

Figure from Walrand,

Berkeley EECS 122, 2003

Open Many Connections

* Web Browser: has to download k objects for a page

— Open many connections or download sequentially?
X
D B

* Assume:
— A opens 10 connections to B
— B opens 1 connection to E
* TCP is fair among connections
— A gets 10 times more bandwidth than B

Figure from Walrand, Berkeley EECS 122, 2003

Exploiting Implicit Assumptions

* Savage, et al., CCR 1999:

— “"TCP Congestion Control with a Misbehaving Receiver”

* Exploits ambiguity in meaning of ACK
— ACKs can specify any byte range for error control

— Congestion control assumes ACKs cover entire sent segments

* What if you send multiple ACKs per segment?

ACK Division Attack

* Receiver: “upon receiving a
segment with N bytes, divide the Sender Receiver

bytes in M groups and acknowledge ”%}_
each group separately AT ‘W
* Sender will grow window M times okt ——

faster gata 1461:295,

. ata 29o4.
* Could cause growth to 4GB in 4 Dats 438;'.228’
:5841

RTTS! %

— M =N = 1460

TCP Daytona!

ACKs

Data Segments (normal)

A X

<4<
<AK«

A4
I KK

<
K

Data Segments
ACKs (normal)

<K
K«

4K

mmmmmmﬁmmmmmmmmmmEmmmmﬁmmmmmm@E%EEE@%EEE@@E%EEH@E@@&@.‘.

Bt

60000 -
50000 H
40000 -
30000 -
20000 H
10000 -

(se1Ag) Jequinu aousnbag

0.5 0.6 0.7

0

0.3
Time (sec

0.2

0.1

Defense

* Appropriate Byte Counting
— [RFC3465 (2003), REC 5681 (2009)]
— In slow start, cwnd += min (N, MSS)

where N is the number of newly acknowledged bytes in
the received ACK

Cheating TCP and Game Theory

X

>

\>
Y —

/

\

v

D - Increases by 1 Increases by 5

10, 35 L (% y)

A
- 22,22
Increases by 1
Increases by 5 35,10 15,15

Individual incentives: cheating pays

Social incentives: better off without cheating

Classic PD: resolution depends on accountability

+— Too aggressive

- Losses
—> Throughput falls

38

An alternative for reliability

* Erasure coding
— Assume you can detect errors

— Code is designed to tolerate entire missing packets
* Collisions, noise, drops because of bit errors

— Forward error correction

* Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

* Property:
— From K source frames, produce B > K encoded frames

— Receiver can reconstruct source with any K’ frames,
with K slightly larger than K

— Some codes can make B as large as needed, on the fly

LT Codes

* Luby Transform Codes
— Michael Luby, circa 1998

* Encoder: repeat B times

1. Pick a degree d (*)
2. Randomly select d source blocks. Encoded block ¢,=
XOR or selected blocks

* The degree is picked from a distribution, robust soliton
distribution, that guarantees that the decoding process will succeed

with high probability

LT Decoder

* Find an encoded block t, with d=1

* Sets, =t

* For all other blocks t_ that include s_,
sett =t . XOR s_

* Delete s, from all encoding lists

* Finish if
1. You decode all source blocks, or

2. You run out out blocks of degree 1

Next Time

* Move into the application layer
* DNS, Web, Security, and more...

Backup slides

e We didn’t cover these in lecture: won’t be in
the exam, but you might be interested ©

More help from the network

 Problem: still vulnerable to malicious flows!

— RED will drop packets from large flows preferentially,
but they don’t have to respond appropriately

* Idea: Multiple Queues (one per flow)
— Serve queues in Round-Robin
— Nagle (1987)
— Good: protects against misbehaving flows
— Disadvantage?

— Flows with larger packets get higher bandwidth

Solution

* Bit-by-bit round robing
* Can we do this?
— No, packets cannot be preempted!

* We can only approximate it...

Fair Queueing

Define a fluid flow system as one where flows
are served bit-by-bit

Simulate ff, and serve packets in the order in
which they would finish in the ff system

Each flow will receive exactly its fair share

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow
system

Packet
system

| [
N

W

o

(o))

98]

jon

time

time

time

time

Implementing FQ
* Suppose clock ticks with each bit transmitted

— (RR, among all active flows)

* P, is the length of the packet

* S, is packet i’s start of transmission time

* F,is packet i’s end of transmission time

* F.=§,+P,

* When does router start transmitting packet i?
— If arrived before F. |, S, = F, ,

— If no current packet for this flow, start when packet
arrives (call this A,): S, = A,

* Thus, F, = max(F, ,A,) + P,

Fair Queueing

* Across all flows
— Calculate F, for each packet that arrives on each flow
— Next packet to transmit is that with the lowest F,
— Clock rate depends on the number of flows

* Advantages
— Achieves max-min fairness, independent of sources
— Work conserving

* Disadvantages
— Requires non-trivial support from routers

— Requires reliable identification of flows
— Not perfect: can’t preempt packets

Fair Queueing Example

* 10Mbps link, 1 10Mbps UDP, 31 TCPs

—
o
N

9 1.8 -
7 g RED 216 | FQ
27 S14-
< =12
= E
_g. 5 _g- 1
314 g30.84
o 3 00.6
e 2 < 0.4

1 0.2

0 NNNNIIﬁNNNNNNIIINIINNNIIINI\ 0

1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31

Flow Number Flow Number

Big Picture

* Fair Queuing doesn’t eliminate congestion:
just manages it
* You need both, ideally:

— End-host congestion control to adapt
— Router congestion control to provide isolation

