
CSCI-1680
Web Performance, Content Distribution

P2P

Based	partly	on	lecture	notes	by	Scott	Shenker and	John	Jannotti

Rodrigo Fonseca

Last time

• HTTP and the WWW
• Today: HTTP Performance

– Persistent Connections, Pipeline, Multiple Connections
– Caching
– Content Distribution Networks

HTTP Performance

• What matters for performance?
• Depends on type of request

– Lots of small requests (objects in a page)
– Some big requests (large download or video)

Larger Objects

• Problem is throughput in bottleneck link
• Solution: HTTP Proxy Caching

– Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

Caching
• Where to cache content?

– Client (browser): avoid extra network transfers
– Server: reduce load on the server
– Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Caching

• Why caching works?
– Locality of reference:

• Users tend to request the same object in succession
• Some objects are popular: requested by many users

Server

Clients

Backbone ISP

ISP-1 ISP-2

How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio
– Dynamic objects not cacheable*

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

*	But	can	cache	portions	and	run	special	code	on	edges	to	reconstruct

HTTP Cache Control
Cache-Control = "Cache-Control" ":" 1#cache-directive
cache-directive = cache-request-directive
| cache-response-directive
cache-request-directive =
"no-cache" ; Section 14.9.1

| "no-store" ; Section 14.9.2
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "min-fresh" "=" delta-seconds ; Section 14.9.3
| "no-transform" ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6

cache-response-directive =
"public" ; Section 14.9.1

| "private" ["=" <"> 1#field-name <">] ; Section 14.9.1
| "no-cache" ["=" <"> 1#field-name <">]; Section 14.9.1
| "no-store" ; Section 14.9.2
| "no-transform" ; Section 14.9.5
| "must-revalidate" ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4
| "max-age" "=" delta-seconds ; Section 14.9.3
| "s-maxage" "=" delta-seconds ; Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["=" (token | quoted-string)]

Reverse Proxies

• Close to the server
– Also called Accelerators
– Only work for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward Proxies
• Typically done by ISPs or Enterprises

– Reduce network traffic and decrease latency
– May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Content Distribution Networks

• Integrate forward and reverse caching
– One network generally administered by one entity
– E.g. Akamai

• Provide document caching
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding

Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How Akamai works

• Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client
• Lots of DNS tricks. BestBuy is a customer

– Delegate name resolution to Akamai (via a CNAME)
• From Brown:
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms
• From Berkeley, CA:
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

DNS Resolution
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:
b.akamai.net. 1101IN NS n1b.akamai.net.
b.akamai.net. 1101IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:
n0b.akamai.net. 1267IN A 24.143.194.45
n1b.akamai.net. 2196IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to
the client’s local resolver
• Uses knowledge of network: BGP feeds, traceroutes.

Their secret sauce…

Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205
ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470
ms 8.483 ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets

1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms

2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms

3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms

4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms

5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms

6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms

7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms

8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms

9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824
ms 4.514 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442
ms 8.689 ms

11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343
ms 81.120 ms

12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595
ms 103.010 ms

13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms

14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884
ms 92.779 ms 93.281 ms

Other	DNS	servers	to	try:	
77.88.8.8	(St	Petersburg),	
89.233.43.71	(Copenhagen),	
202.46.32.22(Beijing)

Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?

What about the content?
• Say you are Akamai

– Clusters of machines close to clients
– Caching data from many customers
– Proxy fetches data from origin server first time it sees

a URL
• Choose cluster based on client network

location
• How to choose server within a cluster?
• If you choose based on client

– Low hit rate: N servers in cluster means N cache
misses per URL

Straw man: modulo hashing

• Say you have N servers
• Map requests to proxies as follows:

– Number servers 0 to N-1
– Compute hash of URL: h = hash (URL)
– Redirect client to server #p = h mod N

• Keep track of load in each proxy
– If load on proxy #p is too high, try again with a

different hash function (or “salt”)
• Problem: most caches will be useless if you add

or remove proxies, change value of N

Consistent Hashing [Karger et al., 99]

• URLs and Caches are mapped to points on a circle using a
hash function

• A URL is assigned to the closest cache clockwise
• Minimizes data movement on change!

– When a cache is added, only the items in the preceding segment are
moved

– When a cache is removed, only the next cache is affected

A

B

C
0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

Consistent Hashing [Karger et al., 99]

• Minimizes data movement
– If 100 caches, add/remove a proxy invalidates ~1% of objects
– When proxy overloaded, spill to successor

• Can also handle servers with different capacities. How?
– Give bigger proxies more random points on the ring

A

B

C
0

1

2

3

4

Object Cache

1 B

2 C

3 C

4 A

Summary

• HTTP Caching can greatly help performance
– Client, ISP, and Server-side caching

• CDNs make it more effective
– Incentives, push/pull, well provisioned
– DNS and Anycast tricks for finding close servers
– Consistent Hashing for smartly distributing load

Peer-to-Peer Systems

• How did it start?
– A killer application: file distribution
– Free music over the Internet! (not exactly legal…)

• Key idea: share storage, content, and bandwidth of
individual users
– Lots of them

• Big challenge: coordinate all of these users
– In a scalable way (not NxN!)
– With changing population (aka churn)
– With no central administration
– With no trust
– With large heterogeneity (content, storage, bandwidth,…)

3 Key Requirements

• P2P Systems do three things:
• Help users determine what they want

– Some form of search
– P2P version of Google

• Locate that content
– Which node(s) hold the content?
– P2P version of DNS (map name to location)

• Download the content
– Should be efficient
– P2P form of Akamai

Napster (1999)

xyz.mp3

Napster

xyz.mp3	?

xyz.mp3

Napster

xyz.mp3	?

xyz.mp3

Napster

xyz.mp3	?

xyz.mp3

Napster

• Search & Location: central server
• Download: contact a peer, transfer directly
• Advantages:

– Simple, advanced search possible
• Disadvantages:

– Single point of failure (technical and … legal!)
– The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3	?

xyz.mp3

An	“unstructured”	overlay	network

• Search & Location: flooding (with TTL)
• Download: direct

Gnutella: Flooding on Overlays

xyz.mp3	?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3	?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3

KaZaA: Flooding w/ Super Peers (2001)

• Well connected nodes can be installed (KaZaA)
or self-promoted (Gnutella)

Say you want to make calls among peers

• You need to find who to call
– Centralized server for authentication, billing

• You need to find where they are
– Can use central server, or a decentralized search, such

as in KaZaA
• You need to call them

– What if both of you are behind NATs? (only allow
outgoing connections)

– You could use another peer as a relay…

Skype

• Built by the founders of KaZaA!
• Uses Superpeers for registering presence,

searching for where you are
• Uses regular nodes, outside of NATs, as

decentralized relays
– This is their killer feature

• This morning, from my computer:
– 29,565,560 people online

Lessons and Limitations

• Client-server performs well
– But not always feasible

• Things that flood-based systems do well
– Organic scaling
– Decentralization of visibility and liability
– Finding popular stuff
– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff
– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy,

etc.)

BitTorrent (2001)

• One big problem with the previous approaches
– Asymmetric bandwidth

• BitTorrent (original design)
– Search: independent search engines (e.g. PirateBay,

isoHunt)
• Maps keywords -> .torrent file

– Location: centralized tracker node per file
– Download: chunked

• File split into many pieces
• Can download from many peers

BitTorrent

• How does it work?
– Split files into large pieces (256KB ~ 1MB)
– Split pieces into subpieces
– Get peers from tracker, exchange info on pieces

• Three-phases in download
– Start: get a piece as soon as possible (random)
– Middle: spread pieces fast (rarest piece)
– End: don’t get stuck (parallel downloads of last pieces)

BitTorrent

• Self-scaling: incentivize sharing
– If people upload as much as they download, system scales

with number of users (no free-loading)
• Uses tit-for-tat: only upload to who gives you data

– Choke most of your peers (don’t upload to them)
– Order peers by download rate, choke all but P best
– Occasionally unchoke a random peer (might become a nice

uploader)
• Optional reading:

[Do Incentives Build Robustness in BitTorrent? Piatek et al,
NSDI’07]

Structured Overlays: DHTs

• Academia came (a little later)…
• Goal: Solve efficient decentralized location

– Remember the second key challenge?
– Given ID, map to host

• Remember the challenges?
– Scale to millions of nodes
– Churn
– Heterogeneity
– Trust (or lack thereof)

• Selfish and malicious users

DHTs

• IDs from a flat namespace
– Contrast with hierarchical IP, DNS

• Metaphor: hash table, but distributed
• Interface

– Get(key)
– Put(key, value)

• How?
– Every node supports a single operation:

Given a key, route messages to node holding key

Identifier to Node Mapping Example

• Node 8 maps [5,8]
• Node 15 maps [9,15]
• Node 20 maps [16, 20]
• …
• Node 4 maps [59, 4]

• Each node maintains a
pointer to its successor

4

20

3235

8

15

44

58

Example	from	Ion	Stoica

Consistent Hashing?

• But each node only
knows about a small
number of other nodes
(so far only their
successors)

4

20

3235

8

15

44

58

Lookup

• Each node maintains its
successor

• Route packet (ID, data) to
the node responsible for
ID using successor
pointers

4

20

3235

8

15

44

58

lookup(37)

node=44

Optional: DHT Maintenance

Stabilization Procedure

• Periodic operations performed by each node N to
maintain the ring:

STABILIZE()	[N.successor =	M]
N->M:	“What	is	your	predecessor?”
M->N:	“x	is	my	predecessor”
if	x	between	(N,M),	N.successor =	x
N->N.successor:	NOTIFY()

NOTIFY()
N->N.successor:	“I	think	you	are	my	successor”

M:	upon receiving	NOTIFY	from	N:
If	(N	between	(M.predecessor, M))

M.predecessor =	N

Joining Operation

4

20

32
35

8

15

44

58

50

§ Node	with	id=50	joins	
the	ring

§ Node	50	needs	to	
know	at	least	one	
node	already	in	the	
system

- Assume	known	node
is	15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

Joining Operation

4

20

3235

8

15

44

58

50

§ Node	50:	send	join(50)	
to	node	15	

§ Node	44:	returns	node	
58	

§ Node	50	updates	its	
successor	to	58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

Joining Operation

4

20

3235

8

15

44

58

50

§ Node	50:	send	
stabilize()	to	node	
58

§ Node	58:	
- Replies	with	44
- 50	determines	

it	is	the	right	
predecessor

succ=58
pred=nil

succ=58
pred=35

stabilize():
“What	is	your	predecessor?”

succ=4
pred=44

Joining Operation

4

20

3235

8

15

44

58

50

§ Node	50:	send	
notify()	to	node	
58

§ Node	58:	
- update	

predecessor	to	
50	

succ=58
pred=nil

succ=58
pred=35

notify():	
“I	think	you	are	my	successor”

pred=50
succ=4
pred=44

Joining Operation

4

20

3235

8

15

44

58

50

§ Node	44	sends	a	stabilize	
message	to	its	successor,	node	
58

§ Node	58	replies	with	50
§ Node	44	updates	its	successor	

to	50
succ=58

stabilize():	
“What	is	your	predecessor?”

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

Joining Operation

4

20

3235

8

15

44

58

50

§ Node	44	sends	a	notify	
message	to	its	new	successor,	
node	50

§ Node	50	sets	its	predecessor	to	
node	44

succ=58

succ=50

notify()
pred=44

pred=50

pred=35

succ=4

pred=nil

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

§ This	completes	the	joining	
operation!

succ=58

succ=50

pred=44

pred=50

Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

Chord

• There is a tradeoff between routing table size
and diameter of the network

• Chord achieves diameter O(log n) with O(log
n)-entry routing tables

Many other DHTs
• CAN

– Routing in n-dimensional space
• Pastry/Tapestry/Bamboo

– (Book describes Pastry)
– Names are fixed bit strings
– Topology: hypercube (plus a ring for fallback)

• Kademlia
– Similar to Pastry/Tapestry
– But the ring is ordered by the XOR metric
– Used by BitTorrent for distributed tracker

• Viceroy
– Emulated butterfly network

• Koorde
– DeBruijn Graph
– Each node connects to 2n, 2n+1
– Degree 2, diameter log(n)

• …

Discussion

• Query can be implemented
– Iteratively: easier to debug
– Recursively: easier to maintain timeout values

• Robustness
– Nodes can maintain (k>1) successors
– Change notify() messages to take that into account

• Performance
– Routing in overlay can be worse than in the underlay
– Solution: flexibility in neighbor selection

• Tapestry handles this implicitly (multiple possible next hops)
• Chord can select any peer between [2n,2n+1) for finger,

choose the closest in latency to route through

Where are they now?

• Many P2P networks shut down
– Not for technical reasons!
– Centralized systems work well (or better) sometimes

• But…
– Vuze network: Kademlia DHT, millions of users
– Skype uses a P2P network similar to KaZaA

Where are they now?

• DHTs allow coordination of MANY nodes
– Efficient flat namespace for routing and lookup
– Robust, scalable, fault-tolerant

• If you can do that
– You can also coordinate co-located peers
– Now dominant design style in datacenters

• E.g., Amazon’s Dynamo storage system
– DHT-style systems everywhere

• Similar to Google’s philosophy
– Design with failure as the common case
– Recover from failure only at the highest layer
– Use low cost components
– Scale out, not up

