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1 Introduction

In this assignment you will be constructing a Virtual IP Network using UDP as the link layer. Your
network will support dynamic routing. Each node will be configured with its (virtual) links at
startup and support the activation and deactivation of those links at run time. You will build a
simple routing protocol over these links to dynamically update the nodes’ routing tables so that
they can communicate over the virtual topology. The relevant class lectures and textbook will be
especially helpful with this part of the project.

This is a 2-person group project. You should find a partner to work with right away, and post your
pairing on Piazza to inform the TAs of your pairing. If you are having problems with this (there
could be an odd number of people in the class), post something on Piazza or ask us. Once the
groups are set, you’ll be assigned a mentor TA to help you through this project and the next, TCP.
TCP will build on this project, so your effort on design will pay off twice.

2 Requirements

2.1 Core Requirements

Before you start coding, you need to understand what you’re doing. It will take a little while to
wrap your head around, but once you do, it will seem straightforward, we promise.

There are two main parts to this assignment. The first is IP in UDP encapsulation, and the design
of forwarding — receiving packets, delivering them locally if appropriate, or looking up a next hop
destination and forwarding them. The second is routing, the process of exchanging information to
populate the routing tables you need for forwarding. This will be done with the Routing Information
Protocol (RIP) which will be shown in class, and is described in section 4.2.2 of the textbook.1

Your network will be structured as a set of cooperating processes. You might run several processes
on a single machine or use separate machines; it doesn’t matter because your link layer is UDP.

Files you will need to bootstrap your network are available in your Github repository. You will
write a network topology file (we’ve supplied some examples) describing the virtual topology of your
intended network. After running our script net2lnx on the complete topology, you’ll have a file for
each node that specifies only that node’s links. You will run your process, which must be called
node, for each virtual node, and must accept the name of that node’s link file as its first argument
on the command line. An example invocation would be:

node <linksfile>

2.2 Capstone Requirements

In addition to everything mentioned in the Core Requirements section, there is a small additional
requirement for students taking cs168 for a capstone requirement. Below is a list of additional
features to implement, and each capstone student is required to implement one of them. So if both

1To be clear, RIP is an indepedent protocol apart from IP. IP as a protocol does not prescribe any particular
routing method. Read RFC 2453, the specification for RIP version 2, for more information.
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students in a pair working on IP are taking cs168 for a capstone credit, then 2 of the following need
to be implemented:

a. Traceroute You will be implementing a subset of ICMP within your IP layer in order to
implement traceroute functionality. The requirements are that you should be able to report
the nodes in shortest path from the current node to any other endpoint in the network. This
functionality requires you to implement the ICMP Time Exceeded Message from RFC 792.

b. Route Aggregation and Longest Prefix Match In large networks it is necessary to
aggregate the networks known to a router in order to keep the size of the routing tables
reasonably small. You will be implementing a mechanism that automatically aggregates the
networks a router learns from its neighbours. As a result of network aggregation, in order for
your routers to route correctly you will also need to implement Longest Prefix Matching. See
the implementation section for more details.

3 Implementation

In brief, your nodes will come up, create an abstract link layer, and begin running RIP on the
specified links. Each node will also support a simple command line interface, described below, to
bring links up and down, and send packets. Finally, when IP packets arrive at their destination,
if they aren’t RIP packets, you will implement an interface to deliver them to an upper layer. In
the next assignment, you will deliver them to your TCP implementation when appropriate. In this
current assignment, you will simply print the packets out in a useful way.

From a network stack persective, you will implement a link layer interface over UDP sockets with
the ability to disable and enable individual interfaces. You will then implement a virtual IP layer
over these interfaces, and then build RIP as a client protocol that uses your virtual IP layer.

3.1 Abstract Link Layer

You will use UDP as your link layer for this project. Each node will create an interface for every
line in its links file — those interfaces will be implemented by a UDP socket. All of the virtual link
layer frames it sends should be directly encapsulated as payloads of UDP packets that will be sent
over these sockets. You must observe an Maximum Transfer Unit (MTU) of 1400 bytes; this means
you must never send a UDP packet (link layer frame) larger than 1400 bytes. However, be liberal in
what you accept. Read link layer frames into a 64KiB buffer, since that’s the largest allowable IP
packet (including the headers).

To enforce the concept of the network stack and to keep your code clean, we require you to provide
an abstract interface to your link layer rather than directly make calls on socket file descriptors from
your forwarding code. For example, define a network interface structure containing information
about a link’s UDP socket and the physical IP addresses/ports associated with it, and pass these to
functions which wrap around your socket calls. We also require that you provide the functionality
to activate/deactivate a link layer interface; this would be equivalent to ifconfig eth0 up/down
or disabling your Ethernet/wireless card.
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3.2 Routing - RIP

One part of this assignment is to implement routing using the RIP protocol described in class, but
with some modifications to the packet structure.

You must adhere to the following packet format for exchanging RIP information:2

uint16_t command;
uint16_t num_entries;
struct {

uint32_t cost;
uint32_t address;
uint32_t mask;

} entries[num_entries];

command will be 1 for a request of routing information, and 2 for a response. num_entries will not
exceed 64 (and must be 0 for a request command). cost will not exceed 16; in fact, we will define
infinity to be 16. address will be an IPv4 address.

mask is a bitmask to denote the size of the network. In the standard version of the assignment, all
routing entries will refer to single IP addresses and thus will use a mask of 255.255.255.255 (ie. all
1’s) to denote a /32. If you are implementing link aggregation, you will adjust the mask based on
how you decide to represent each network.

As with all network protocols, all fields must be sent on the wire in network byte order.

Once a node comes online, it must send a request on each of its interfaces. Each node must send
periodic updates to all of its interfaces every 5 seconds. A routing entry should expire if it has not
been refreshed in 12 seconds3. If a link goes down, then the network should be able to recover by
finding different routes to nodes that went through that link.

You must implement split horizon with poisoned reverse, as well as triggered updates. Triggered
updates do not contain the entire routing table, just the routes that are updated.

3.3 Forwarding

In addition, you will design a network layer that sends and receives IP packets using your link layer.
Overall, your network layer will read packets from your link layer, then decide what to do with the
packet: local delivery or forwarding.

The IP packet header is available in /usr/include/netinet/ip.h as struct ip. Those of you not
using C/C++ may use /usr/include/netinet/ip.h or other sources as a reference for crafting
your headers4.

While you are not required to support advanced IP features such as IP options and fragmentation,
your design should be able to receive these packets and act on them in a sensible way. For example,
you are not required to send packets with IP options, but you must be able to accept packets

2If you are writing in C or C++, consider using flexible array members for allocation of your packet structure.
3When testing your project, feel free to make these times longer if it assists with using a debugger.
4RFC 791, the IPv4 specification, would be a good place to start!
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with options (ignoring the options). Similarly, you are not required to send fragmented packets, or
implement reassembly of fragmented packets that you receive.

You will need an interface between your network layer and upper layers for local delivery. In this
project, some of your packets need to be handed off to RIP; others will simply be printed. In the
next assignment, you will be handing packets off to your TCP implementation. These decisions are
based on the IP protocol field. Use a value of 200 for RIP data, and a value of 0 for the test data
from your send command, described below. We ask you to design and implement an interface that
allows an upper layer to register a handler for a given protocol number. We’ll leave its specifics up
to you. An example of how you might go about doing this in C (for some some_data_t):

typedef void (*handler_t)(some_data_t *, struct ip *);
void net_register_handler(uint8_t protocol_num, handler_t handler);

For example, for RIP packets, the RIP packet should be the payload for the IP packet. As a protocol,
an RIP handler should be able to be registered with the following in order to receive incoming
packets with an IP protocol field of 200:

net_register_handler(200, RIP_handler);

Likewise, RIP as a protocol should be able to send packets over a particular interface through IP.
Keep in mind that this will require a clean abstraction of your link layer interfaces.

Even without a working RIP implementation, you should be able to run and test simple forwarding,
and local packet delivery. Try creating a static network (hard code it, read from a route table, etc.)
and make sure that your code works. Send data from one node to another one that requires some
amount of forwarding. Integration will go much smoother this way.

3.4 Driver

Your driver program, node, will be used to demonstrate all features of the system. You must support
the following commands within a command line interface.

interfaces,i Print information about each interface, one per line.

routes,r Print information about the route to each known destination, one per line.

down integer Bring an interface “down”.

up integer Bring an interface “up” (it must be an existing interface, probably one you brought
down)

send vip proto string Send an IP packet with protocol proto (an integer) to the virtual IP address
vip (dotted quad notation). The payload is simply the characters of string (as in Snowcast,
do not null-terminate this).

q Quit the node by cleaning up used resources

You should feel free to add any additional commands to help you debug or demo your system, but
the above the commands are required. It would be to your advantage to add bandwidth-intensive
test commands to help prepare your implementation for TCP.
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3.5 Traceroute (Capstone Only)

Your driver should include the following command for demonstrating traceroute:

traceroute vip prints out the sequence of hops in the following format: <hop num> <vip>. So an
example output would be:

Traceroute from 192.168.0.2 to 192.168.0.5
1 192.168.0.2
2 192.168.0.8
3 192.168.0.5
Traceroute finished in 3 hops

From the driver command, we should be able to see changes in the path when any node in the
network is brought up or down. If a host is not in the network, or is unreachable, you should print
that information.

3.6 Route Aggregation and Longest Prefix Match (Capstone Only)

Every router you create in this project represents a single local ip address. In contrast, real world
routers represent networks that are attached directly to them. Therefore in this project you will
implement a relaxed version of route aggregation:

• all the networks (a single address is a network with mask 255.255.255.255) learned from a
specific neighboring router can be aggregated to the smallest network which contains all the
learned networks.
You can safely assume that networks this will be tested on will have ip addresses allocated in
a manner that conforms to the topology.

• The distance metric of the aggregated network will be equal to the shortest distance from the
aggregated routes.

These relaxations will lead to cases where the routers behaviour will diverge from what is otherwise
considered correct behaviour: a router may forward a packet whose destination is a “hole” in the
network (a target address that part of the network, but does not exist in any node), and the distance
metric may be incorrect for some of the nodes in the network (when aggregating we use the shortest
distance, leading to some nodes to appear closer than they are).

Apart from these cases, a driver implemeting route aggregation MUST behave correctly, therefore
Longest Prefix Matching is necessary.

Note: The reference node does not implement route aggregation. Do not run the reference node
while testing your own implementation for this step, as it will not propagate your messages correctly.

4 Getting Started

We’ve created a few tools that you can use to help you with your project. They are available in the
following github classroom invitation link:
https://classroom.github.com/g/SLdvHwug
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4.1 Development Environment

To build this assignment, you may work on either the department machines or the provided Vagrant
VM. You can find details on how to use the Vagrant environment here:
https://cs.brown.edu/courses/csci1680/f18/content/vagrant.pdf

When submitting your work, please indicate which environment you used in your Readme.

4.2 Executables

• tools/ref_node - The reference node that you should be able to communicate with.

• tools/net2lnx - A tool to convert a .net file into a series of .lnx files that each node can read
separately.

4.3 Sample Networks

These are found in the nets/ subdirectory.

• AB.net - Simple network with three nodes. It may looks like this:

node A localhost
node B localhost
node C localhost
A <-> B
B <-> C

which tells you the physical location of each node and how they are connected. After running
net2lnx on it, you will have something look like:

A.lnx:
localhost 17000
localhost 17001 10.116.89.157 10.10.168.73

B.lnx:
localhost 17001
localhost 17000 10.10.168.73 10.116.89.157
localhost 17002 10.42.3.125 14.230.5.36

C.lnx:
localhost 17002
localhost 17001 14.230.5.36 10.42.3.125

which you can feed each node as their link information. These files mean that A has one
interface defined by a pair of tuples, the IP “localhost” and port 17000 and the IP “localhost”
and port 17001. The interface’s virtual IP is 10.116.89.157. It is connected to another interface
(defined by the reversed tuple) with virtual IP 10.10.168.73.

• loop.net - More complicated network with the following shape:

7
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src -- srcR -- short -- dstR -- dst
| |
\-- long1 -- long2 -/

A useful test for routing is to start the network and make sure src goes to dst through short.
Then stop the short node and see what happens.

4.4 Utilities for C

If you are using C, we have provided several utility files with useful functions in main.c and the
support directory:

• Debugging: dbg.c dbg.h. Print colored debugging messages. You can enable and disable
categories of messages based on the environment variable DBG_MODES. See node.c for an
example of how to use them in your code. By default, node enables only error messages. If
you want to enable only, say, net layer and routing messages, then you can run:

DBG_MODES=net,route ./node file.lnx

See dbg_modes.h for a full list of debugging modes—feel free to add your own!

• IP checksum calculation: ipsum.c. Use this function to calculate the checksum in the IP
header for you.

• Linked list: list.h.

• Hash table: htable.c htable.h.

• IP header: ip.h, equivalent to <netinet/ip.h>.

• parseLinks: parseLinks.c parseLinks.c, implementation of parsing the lnx file. Feel free
to use it directly or modifying it.

5 Getting Help

This project isn’t intended to be painful, and you have many resources to help you. Make sure
you’ve read this handout and really understand what we mean when we say that UDP is your virtual
network’s link layer. Piazza is always a good place to get help on general topics, and the TAs will,
of course, be holding TA hours and scheduling appointments.

Make sure that you work together with your group partner, and try to split the project up so that
neither of you has too much to handle. An obvious way to split things up is for one person to
implement routing (RIP) and the other to be responsible for everything else (packet forwarding,
send/recv interface, etc), but you can do whatever you feel is appropriate. It will not be possible for
you to go off into separate rooms, implement your half, and “just hook them up.” You should work
together, there is a lot that should be designed together. The routing table is the most obvious
example.

We request you use Git well so that you can update each other periodically (commit often, but
only when the build succeeds!). However, please note that your Git repos should be private, and
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you are not allowed to share code with other groups. You can talk to other groups about concepts,
algorithms, etc., but each group’s code must be their own.

Finally, each group will have a mentor TA. This means that you will have one of the TAs as your
group’s advisor. You’ll need to set up a milestone appointment to meet with your mentor TA during
the first week of the project to discuss the project design. Once you have approval, you should stay
in contact with your mentor, who will be grading your project and will be able to explain what the
project ultimately should be doing. Your mentor also will do their best to help outside of TA hours,
debugging, discussing design, etc. Just because your mentor is helping you out, however, does not
mean that they are at your beck and call. Understand that the TA staff is busy too!

6 Grading

6.1 Milestone - 20%

You will schedule a milestone design meeting with your mentor TA by Tuesday, October 9th. At
this milestone, you should have a clear design for your program and be ready to ask questions you
don’t understand. Be ready to answer specific questions about your design, for instance:

• What objects will you use to abstract link layers, and what interface will it have?

• What fields in the IP packet are read to determine when to forward a packet?

6.2 Functionality - 65%

Most of your grade will be based on how well your program conforms to our specification. As in
the Snowcast project, you will be expected to interoperate with the reference implementation as
well as with other pairs’ projects. Among other details, your program will be expected to maintain
forwarding tables, handle packet forwarding, network loops, and maintain interfaces that may go up
or down at any time without causing the network to crash.

6.3 Code Quality - 10%

Because part of the specification prescribes the programming interfaces for the link layer and for
the upper layer handlers to IP, we will be evaluating the design of those interfaces as well as general
code quality.

6.4 README - 5%

Please include a README that describes your design decisions, including how you abstract your
link layer and its interfaces, the thread model for your RIP implementation, and the steps you will
need to process IP packets. List any known bugs or notable design decisions. If you identify known
bugs, we will take off fewer points than if we have to find them ourselves.

In your README, please also note whether you worked on the department machines or using the
development VM, and any instructions necessary to build your project. If you are using a language
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other than C/C++, please include a Makefile that builds your code in the appropriate manner—this
will make our lives much easier when grading!

7 Handing In and Interactive Grading

Once you have completed the project you should commit and push your Git repo to deliver your
code.

Your mentor TA will arrange to meet with you for your interactive grading session to demonstrate
the functionality of your program and grade the majority of it. This meeting will take place at some
point shortly after the project deadline. Between the time you’ve handed in and the demo meeting,
you can continue to make minor tweaks and bug fixes (and you should, since it will be the codebase
for your next project). However, the version you’ve handed in should be nearly complete since it
could be referenced for portions of the grading.

8 A Warning

You should start on this project now. We expect all of the projects in CS168 to take the full amount
of time we give you. It can be tricky so we want to make sure that you stay on top of it. The
milestone design meeting is meant to encourage you to plan your design. Ask questions now if in
doubt. Start talking with your partner right away, and get ready to get connected!

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS168 document by filling out the anonymous feedback form:

https://piazza.com/brown/fall2018/csci1680.
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