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1 Introduction

In this project, you will implement a simple but RFC-compliant form of TCP on top of IP from
your last assignment. You will build the transport layer and export a socket API similar to what
you used in Snowcast.

Each year, students report this assignment is an order of magnitude harder than its predecessor
(seriously). But when you are done here, you will really understand TCP. We’ve given you a lot of
time for this assignment — use it wisely!

2 The Pieces

In this assignment you will use the library you wrote for IP as the underlying network.

Your TCP implementation will have four major pieces — the state machine that implements
connection setup and teardown, the sliding window protocol that determines what data you are
allowed to send and receive at any point, the API to your sockets layer, and a driver program that
will allow all of us to test your code.

Additionally, students taking this class for a capstone will have to implement a congestion control
algorithm and document its performance.

2.1 State Machine

You have to implement a state machine that allows state transitions in your TCP. You can use this
diagram E] to help orient yourself.

The state machine is not as complicated as it may seem, but you should be sure that your TCP
follows all state transitions properly, and doesn’t do anything otherwise. For example, you need to
send SYNs for connect, and FINs to close. You will be expected to follow RFC793% and RFC2525
precisely, except for the parts of the RFC that refer to PUSH, RST, urgent data, options, precedence,
or security.

You can start coding by just using the diagram and getting connections to set up and close under
ideal conditions. However, there are tons of less obvious cases that the diagram doesn’t cover — for
example, what happens when, after a call to connect, you’ve sent a SYN, but you receive a packet
that has an incorrect ACK in it? Once your basic state diagram is working, we recommend that
you look at the RFC for answers to questions such as these. In particular, pages 54 and on contain
info on exactly what you should do in such scenarios.

2.2 Sliding Window Protocol

You need to implement the sliding window protocol that is the heart of TCP. Make sure you
understand the algorithm before you start coding. Also keep in mind how sliding windows will
interact with the rest of TCP. For example, a call to CLOSE (v_shutdown(s, 1) in our API) only

"http://ttcplinux.sourceforge.net/documents/one/tcpstate/tcpstate. html
’http://www.faqs.org/rfcs/rfc793.html
3http://www.faqs.org/rfcs/rfc2525.html
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closes data flow in one direction. Because data will still be flowing in the other direction, the closed
side will need to send acknowledgments and window updates until both sides have closed.

Be sure that you can accept out-of-order packets. That is, a packet’s sequence number
doesn’t have to be exactly the sequence number of the start of the window. It can be fully contained
within the window, somewhere in the middle. The easiest way to handle such packets is to place
them on a queue of potentially valid packets, and then deal with them once the window has caught
up to the beginning of that segment’s sequence number.

You should strictly adhere to the flow control window as specified in the RFC, e.g. do not send
packets outside of your window, etc. Similarly, you should implement zero window probing to
ensure your sender can recover when the receiver’s window is full. Overall, your goal is to ensure
reliability—all data must get to its destination in order, uncorrupted.

You are not required to implement slow start, but you should detect dropped or un’acked packets
and adjust your flow accordingly.

2.3 API

You must implement an API to your TCP implementation. This layer will use constructs appropriate
for whichever language you are using, but the API functions/methods will be essentially the same.

In C, you will create a mock sockets layer, using your own table and set of integers to allow connecting
and listening, reading and writing into buffers, etc. In Go, you should provide types similar to
net. TCPConn and net. TCPListener. In Java, you will provide a type similar to java.net.Socketl

An independent thread in your program should be able to use this interface in almost the exact same
way that you would use the normal API in your language. These functions, on error, should return
appropriate error codes (such as negative values in C, error values in Go, or thrown exceptions in
Java). For C, make sure to use the official error codes (such as EBADF).

The functionality you need in the C socket API is shown below. Except for v_socket and v_bind,
these functions (or some reasonably equivalent function, potentially with a different name or
arguments) should be part of the API for any language other than C.

If you are using a language other than C, you should implement a socket interface similar to
that provided by the language, but you are only required to support enough functionality to
provide the basic socket operations described here. For example, in Go, you should implement an
interface similar to net.TCPConn and net.TCPListener, but you need not implement functions like
SetReadDeadline.

/* creates a new socket, binds the socket to an address/port
If addr is nil/0, bind to any available interface
After binding, moves socket into LISTEN state (passive OPEN in the RFC)
returns socket number on success or negative number on failure
Some possible failures : ENOMEM, EADDRINUSE, EADDRNOTAVAIL
(Note that a listening socket is used for "accepting new connections") */
int v_listen(struct in_addr *addr, uintl6_t port);

/* creates a new socket and connects to an address (active OPEN in the RFC)
returns the socket number on success or a negative number on failure


http://golang.org/pkg/net/#TCPConn
http://golang.org/pkg/net/#TCPListener
http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
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You may choose to implement a blocking connect or non-blocking connect
Some possible failures : EAGAIN, ECONNREFUSED, ENETUNREACH, ETIMEDOUT */
int v_connect(struct in_addr addr, uintl6_t port);

/* accept a requested connection from the listening socket’s connection queue
returns new socket handle on success or negative number on failure
if node is not null, it should fill node with the new connection’s address
accept is REQUIRED to block when there is no awaiting connection
Some possible failures: EBADF, EINVAL, ENOMEM %/

int v_accept(int socket, struct in_addr *node);

/* read on an open socket (RECEIVE in the RFC)
return num bytes read or negative number on failure or O on eof and shutdown_read
nbyte = 0 should return 0 as well
read is REQUIRED to block when there is no available data
A1l reads should return at least one data byte unless failure or eof occurs
Some possible failures : EBADF, EINVAL x*/
int v_read(int socket, void *buf, size_t nbyte);

/* write on an open socket (SEND in the RFC)
return num bytes written or negative number on failure
nbyte = 0 should return 0 as well
write is REQUIRED to block until all bytes are in the send buffer
Some possible failures : EBADF, EINVAL, EPIPE */
int v_write(int socket, const void *buf, size_t nbyte);

/* shutdown an connection. If type is 1, close the writing part of
the socket (CLOSE call in the RFC. This should send a FIN, etc.)
If 2 is specified, close the reading part (no equivalent in the RFC;
v_read calls should return O, and the window size should not grow any
more). If 3 is specified, do both. The socket is NOT invalidated.
returns O on success, or negative number on failure
If the writing part is closed, any data not yet ACKed should still be
retransmitted.
Some possible failures : EBAF, EINVAL, ENOTCONN x/

int v_shutdown(int socket, int type);

/* Invalidate this socket, making the underlying connection inaccessible to
ANY of these API functions. If the writing part of the socket has not been
shutdown yet, then do so. The connection shouldn’t be terminated, though;
any data not yet ACKed should still be retransmitted.

Some possible failures : EBADF */
int v_close(int socket);
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2.4 Driver

Your driver should support the following commands (“command/cmd” means that typing both
“command” and “cmd” should have the same effect). Note that you do not need to have "up" or
"down" functionality for this project (as TCP sockets are rarely well defined with interfaces brought
down), but we recommend keeping the code for that.

h Print this list of commands.
li Print information about each interface, one per line.

Ir Print information about the route to each known destination, one per line.

Is List all sockets, along with the state the TCP connection associated with them is in, and their
window sizes (one should be the socket’s receiving window size, and the other should be the
peer’s receiving window size)

a port Open a socket, bind it to the given port on any interface, and start accepting connections
on that port. Your driver must continue to accept other commands.

c ip port Attempt to connect to the given IP address, in dot notation, on the given port. Example:
c 10.13.15.24 1056.

s socket data Send a string on a socket. This should block until write() returns.

r socket numbytes y/n Try to read data from a given socket. If the last argument is y, then you
should block until numbytes is received, or the connection closes. If n, then don’t block; return
whenever and whatever read() returns. Default is n.

sf filename ip port Connect to the given IP and port, send the entirety of the specified file, and
close the connection. Your driver must continue to accept other commands.

rf filename port Listen for a connection on the given port. Once established, write everything you
can read from the socket to the given file. Once the other side closes the connection, close the
connection as well. Your driver must continue to accept other commands. Hint: give
/dev/stdout as the filename to print to the screen.

sd socket read/write/both v_shutdown on the given socket. If read or r is given, close only the
reading side. If write or w is given, close only the writing side. If both is given, close both
sides. Default is write.

cl socket v_close on the given socket.

q Quit cleanly brushing up the used memory allocations.

2.5 Congestion Control (Capstone only)

Each student taking cs168 for capstone, and choosing the IP/TCP additions route, will be responsible
for implementing one of the following congestion control algorithms. Your TCP design should be
able to selectively enable and disable any congestion control module that is available, and only 1
congestion control algorithm can be enabled per tcp socket at any given time. If you would like to
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implement a different congestion control algorithm than the two provided below (since there are
many more out there), first seek approval from the TAs.

The algorithms you may choose from are:

e TCP Tahoe: Slow Start, Congestion Avoidance, Fast Retransmit

e TCP Reno: TCP Tahoe + Fast Recovery

If there are two students both taking cs168 for capstone, they may not share parts of their code for
the congestion control algorithm with each other. All code for each congestion control algorithm must
be written individually. Your TCP driver must implement the following commands to demonstrate
your congestion control algorithm:

Ic Prints the available congestion control algorith names: reno, tahoe, ...

sc socket string Sets the congestion control algorithm for the given socket. To disable congestion
control, use the string: none

*s You should modify your sockets command to also list the congestion control algorithm (if any)
the socket is using, and the congestion window size as well.

*sf You should modify your sendfile to optionally take in a congestion control algorithm, with the
options being: reno, tahoe, .... The default for no argument is none.

Lastly, you will be required to provide trace files as well as a summary of how your congestion
control algorithm fared against your implementation just using flow control.

3 Implementation

A few notes:

e You must use the TCP packet format, exactly as-is. If you are using C, you should use the
header found in netinet/tcp.h, although technically, you can use anything, since the TCP
packet format is not exposed in the API.

e TCP uses a pseudo-header in its checksum calculation. Make sure you understand how TCP
checksumming works to ensure interoperability with the TA binary. You may consult online
resources as needed [

e You should not use arbitrary sleeps in your code. For example, you might have a thread
which takes care of all your transmission. You shouldn’t have this thread check whether there
is something to be sent every 1 ms, because 1 ms is an eternity on a fast LAN connection.
Mutexes and Conditions are your friends.

e As in the IP assignment, never send packets greater than the MTU. Even if you implemented
fragmentation in your IP, you should assume that fragmentation is not supported.

4http://www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader-2.htm
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e You don’t have to handle any TCP options. You can ignore any options that you see in
incoming packets (but don’t blow up!).

e When should v_ connect() timeout? A good metric is after 3 re-transmitted SYNs fail to be
ACKed. The idea is that if your connection is so faulty that 4 packets get dropped in a row,
you wouldn’t do very well anyway. How long should you wait in between sending SYNs? You
can have a constant multi-second timeout, e.g. 3 seconds. Or, you can start off at 2 seconds,
and double the time with each SYN you retransmit.

e The RFC states that a lower bound for your RTO should be 1 second. This is way too long!
A common RTT is 350 microseconds for two nodes running on the same computer. Use
1 millisecond as the lower bound, instead. By a similar principle, you do not need to be

overzealous in precisely measuring RT'T; it is reasonable to tolerate small processing delays
( 1-10ms).

e There are several places in the RFCs that leave room for flexibility in implementation. We
extend the same flexibility to your projects, as long as you can justify your design decisions
(in a README). A good rule of thumb is to be liberal in what you accept but conservative in
what you output. For example, you are not required to implement Nagle’s algorithm (which
will be covered in class), but you should be able to operate with implementations that do.

e A non-exhaustive list of RFCs that you might find relevant include: RFC793, RFC2525,
RFC6298, RFC2581, RFC1122

4 Tips
A few tips:

e Debugging TCP can be very difficult, and sometimes your own logging isn’t enough. Therefore,
we suggest using |Wireshark), an industrial-strength packet analyzer. Wireshark has many tools
to help analyze TCP connection state, which may prove useful for debugging. If you have
questions how to use wireshark to accomplish a particular task, please feel free to ask!

e Log as much as you can, and make it possible to filter out what you care about. For example,
you may only want to log information related to a specific connection, or you may only want
to see logs from TCP, and not IP.

e Take a look online for guides on profiling your language. For a lot of languages you can use
gprof, CallGrind and KCacheGrind (for example, C, Go and OCaml all allow you to use this).

5 Grading

5.1 Milestone I — 5% (Nov 2)

Your mentor TA will reach out to set up a meeting by the milestone due date.

For this meeting, your implementation should be able to demonstrate the following:


https://www.wireshark.org/
http://sourceware.org/binutils/docs/gprof/
http://valgrind.org/docs/manual/cl-manual.html
http://kcachegrind.sourceforge.net/html/Home.html
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e Establishing connections by properly following the TCP state diagram under ideal conditions.
Connection teardown is NOT required for this milestone.

e Interoperation with both your implementation and the provided reference implementation as
endpoints

e Correct operation even with another node in between the two endpoints. Your IP and
routing should make this trivial. Note that this sounds redundant, but doing this early in the
development of TCP will ensure you find any lingering bugs in your IP implementation.

In addition, try to consider how you would attack these problems before your meeting;:

e What data structures would you need to represent sockets?
e What means of EVENTS would you need to consider?

e Directly following your answer, what aspects of any execution would need to block/wait for
these EVENTS?

e How would you implement retransmission?

e In what circumstances would a socket allocation be deleted? What could be hindering when
doing so? Note that the state CLOSED would not be equivalent as being deleted.

e What does a "SYN" packet or a "FIN" packet do to the receiving socket (in general)?

e How does a LISTEN socket produce a new connection? Try to be as detailed as possible.

5.2 Milestone IT — 20% (Nov 9)

Set up a meeting with your TA for anytime by the milestone due date.

For this meeting, students should have the send and receive commands working over non-lossy links.
That is, send and receive should each be utilizing the sliding window and ACKing the data received
to progress the window. This also means that sequence numbers, circular buffers, etc. should be in
place and working.

Retransmission, connection teardown, packet logging and the ability to send and receive at the same
time are not yet required. The final implementation, will, however require these functionalities be
implemented correctly.

5.3 Basic Functionality — 55%

As usual, most of your grade depends on how well your implementation adheres to these specifications.
Some key points:

e Properly follow the state diagram.

e Adhere to the flow control window.

e Re-transmit reasonably. Calculate SRTT and RTO.
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e Send data reliably. Files sent across your network should arrive at the other end identical to
how they were sent, even if the links in between the two nodes are lossy.

e Follow the RFC in corner cases. You may ignore error-related edge cases that normally require
RST packets.

The idea is that having full basic functionality means that any existing valid TCP implementation
should be able to talk with yours and eventually get data across, regardless of how faulty the link is.

5.4 Performance and Documentation — 20%

We want you to understand how your design decisions affect your TCP’s behavior. In your README,
you should document your major design decisions and your reasoning for using them.

Another part of this grade will be based on performance. Since we mostly test using a single
machine, the performance of any implementation is dependent on CPU speed. To get a baseline
for performance, run two reference nodes connected directly to each other with no packet loss
and compare the time to send a file of a few megabytes in size (you can also directly measure the
throughput in Wireshark). Your implementation should have performance on the same order of
magnitude as the reference under the same test conditions. In addition, your implementation should
also not perform terribly if the link is slightly faulty—again, compare to the reference implementation
for a baseline.

Finally, you should submit a packet capture of a 1 megabyte file transmission between two of your
nodes. To do this, run two of your nodes in the ABC network with the lossy node in the middle,
configured with a 2% drop rate.

After filtering your packet capture to show only one side of the transmission, you should “annotate”
the following items in the capture file:

e The 3-way handshake
e One example segment sent and acknowledged
e One segment that is retransmitted

e Connection teardown

To do this, list the frame numbers for each item in your README with a description. For
each annotation, you should evaluate if your implementation is responding appropriately per the
specification. If you notice any issues, you should document them accordingly.

An example packet capture will be demonstrated in class before the deadline.

Capstone students will also need to provide packet captures for their congestion control implementa-
tion. For these you should run your congestion control algorithm in a drop-free network, and also
run it with the faulty node in the middle. Similarly, you should run your algorithm with no other
competition, as well as run multiple instances of your algorithm intermixed with simple flow control
TCP streams simultaneously. In your write up you should explain the behaviour of your node in all
these situations, and try to explain the strengths and weaknesses of your algorithm.
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6 Getting Started

Since this project is a continuation of your work from the IP assignment, you should continue
development in your IP repository.

We have provided a few additional reference binaries for this assignment, which are available here:
https://github.com/brown-cscil680/ip-tcp-starter/tree/master/tcp_tools

Please copy these files into your IP repository—there is no need to start a new repository for this
assignment.

10
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6.1 Development Environment

Once again, you may implement your work on either the department machines or the provided
Vagrant VM. You can find details on how to use the Vagrant environment here:
https://cs.brown.edu/courses/csci1l680/f18/content/vagrant.pdf

When submitting your work, please indicate which environment you used in your Readme.

6.2 Reference Implementations
6.2.1 Lossy Network Node (ip_node_lossy)

The starter repository contains an IP node called ip_node_lossy that can be configured to drop a
fraction of outgoing packets. This will be useful when testing your retransmission and timeout logic.
You can specify the drop rate with the command “lossy”. The drop rate should be a value between
0.0 and 1.0, where 1.0 means every packet will be dropped by the node.

6.2.2 TCP Reference Implementation (ref_tcp_node)

The starter repository also contains a reference TCP implementation.

We must emphasize that your node MUST be able to operate with the reference node, so please
test using this node frequently!

In addition, make sure you fix any lingering issues in IP preventing your node from working with
the reference IP nodes! If you have questions on how to do this, please contact the course staff.

Note that the reference implementation does not implement congestion control.

6.2.3 IP Reference implementation (by request only)

If you do not feel confident in extending your work from the previous assignment to support TCP,
we will provide a reference implementation for IP (available as a C static library) that you can use
to implement this assignment.

To request a reference implementation, or if you need help deciding if this is right for your team,
please email the TAs list.

7 Handing In and Interactive Grading

Before each milestone and before the final deadline, once you have completed the requirements for
that part of the project, you should commit and push your git repository.

Your mentor TA will arrange to meet with you for each interactive grading session (milestones and
final demo) to demonstrate the functionality of your program and grade the majority of it. This
meeting will take place at some point shortly after the project deadline.

Between the time you’ve handed in and the final demo meeting, you can continue to make minor
tweaks and bug fixes. However, the version you’ve handed in should be nearly complete since it

11
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could be referenced for portions of the grading.

8 Final Thoughts

Although we expect compatibility between your TCP implementation and our own, do not get
bogged down in the RFC from the start. It is much more important that you understand how TCP
works on an algorithmic/abstract level and design the interface to your buffers from your TCP stack
and from the virtual socket layer.

Don’t tackle the RFC until you're sure that you have your head wrapped around the assignment. For
any corner cases or small details, the RFC will be your best friend, and our reference implementation
should come in handy. You should read it and consult the TA staff if you have any questions
about what you are required to do, or how to handle corner cases. It is not OK to just make
assumptions as to how things will work, because we will be testing your code for interoperability
with the reference node and other groups in the class.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS168 document by filling out the anonymous feedback form:

https://piazza.com/brown/fall2018/cscil680.

12
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