CSCI-1680
Web Performance, Content Distribution
P2P

Rodrigo Fonseca

Based partly on lecture notes by Scott Shenker and John Jannotti

Last time

* HTTP and the WWW
* Today: HTTP Performance

— Persistent Connections, Pipeline, Multiple Connections
— Caching

— Content Distribution Networks

HTTP Performance

* What matters for performance?

* Depends on type of request
— Lots of small requests (objects in a page)

— Some big requests (large download or video)

Larger Objects

* Problem is throughput in bottleneck link
* Solution: HTTP Proxy Caching

— Also improves latency, and reduces server load

clients

Proxy
cache

O)

server

How to Control Caching?

* Server sets options
— Expires header
— No-Cache header
* Client can do a conditional request:
— Header option: if-modified-since
— Server can reply with 304 NOT MODIFIED

Caching

* Where to cache content?
— Client (browser): avoid extra network transfers

— Server: reduce load on the server

— Service Provider: reduce external traffic

Caching

* Why caching works?

— Locality of reference:

 Users tend to request the same object in succession

* Some objects are popular: requested by many users

How well does caching work?

* Very well, up to a point
— Large overlap in requested objects
— Objects with one access place upper bound on hit ratio
— Dynamic objects not cacheable*
* Example: Wikipedia
— About 400 servers, 100 are HTTP Caches (Squid)
— 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

HTTP Cache Control

Cache-Control = "Cache-Control" l#cache-directive
cache-directive = cache-request-directive

| cache-response-directive

cache-request-directive =

"no-cache" ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "min-fresh" "=" delta-seconds ;s Section 14.9.3
| "no-transform" ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6
cache-response-directive =

"public” ; Section 14.9.1
| "private" ["=" <"> l#field-name <">] ; Section 14.9.1
| "no-cache" ["=" <"> l#field-name <">]; Section 14.9.1
| "no-store" : Section 14.9.2
| "no-transform" ; Section 14.9.5
| "must-revalidate" ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4
| "max-age" "=" delta-seconds ;s Section 14.9.3
| "s-maxage" "=" delta-seconds ;s Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["=" (token | quoted-string)]

Reverse Proxies

* Close to the server
— Also called Accelerators
— Only work for static content

Reverse proxies

Forward Proxies

* Typically done by ISPs or Enterprises

— Reduce network traffic and decrease latency

— May be transparent or configured

Reverse proxies

ackbone IS

Content Distribution Networks

* Integrate forward and reverse caching

— One network generally administered by one entity

— E.g. Akamai
* Provide document caching

— Pull: result from client requests

— Push: expectation of high access rates to some objects
* Can also do some processing

— Deploy code to handle some dynamic requests

— Can do other things, such as transcoding

Example CDN

How Akamai works

* Akamai has cache servers deployed close to clients
— Co-located with many ISPs

* Challenge: make same domain name resolve to a proxy close to the client

* Lots of DNS tricks. BestBuy is a customer
— Delegate name resolution to Akamai (via a CNAME)

* From Brown:

dig www.bestbuy.com

:; ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME all05.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235

all05.b.akamai.net. 20 IN A 198.7.236.240

— Ping time: 2.53ms

* From Berkeley, CA:

all05.b.akamai.net. 20 IN A 198.189.255.200
all05.b.akamai.net. 20 IN A 198.189.255.207

— Ping time: 3.20ms

&

0
’l

\ENE]{

/BlE|

[
Q|

DNS Resolution

dig www.bestbuy.com

; 7 ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME all05.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235

all05.b.akamai.net. 20 IN A 198.7.236.240

7+ AUTHORITY SECTION:

b.akamai.net. 1101IN NS nlb.akamai.net.
b.akamai.net. 1101IN NS nOb.akamai.net.
:: ADDITIONAL SECTION:

n0b.akamai.net. 1267IN A 24.143.194.45
nlb.akamai.net. 2196 IN A 198.7.236.236

* nlb.akamai.net finds an edge server close to
the client’s local resolver

* Uses knowledge of network: BGP feeds, traceroutes.
Their secret sauce...

5
@

Example

dig www.bestbuy.com
53 QUESTION SECTION:
;www.bestbuy.com. IN A

+; ANSWER SECTION:

www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.

www . bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;3 Query time: 6 msec

;3 SERVER: 192.168.1.1#53(192.168.1.1)
33 WHEN: Thu Nov 16 ©9:43:11 2017

;: MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets

1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms

2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms

3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms

4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms

5 1sb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms

7 host-198-7-224-105.0shean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms

9 * ae-4.r00.bstnmad7.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny@1.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205
ms 10.477 ms

11 ae-1.r08.nycmny@1.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms
ae-1.r07.nycmny@1.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms

12 ae-0.a00.nycmny@1.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms
ae-1.200.nycmny@1.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms

13 al04-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470
ms 8.483 ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets

1

W 00 N O U1l WN

3 = = 3 =3 =3 =3
wbhs WO - Ve n

router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms

138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms

10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms

10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
1sb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
host-198-7-224-105.0shean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms

ae-4.r00.bstnmad7.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824
4.514 ms

ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442
8.689 ms

ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343
81.120 ms

ae-6.r01.mdrdsp@3.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595
103.010 ms

81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms

a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884
92.779 ms 93.281 ms

Other DNS servers to try:
77.88.8.8 (St Petersburg),

89.233.43.71 (Copenhagen),
202.46.32.22(Beijing)

Other CDNs

Akamai, Limelight, Cloudflare

* Amazon, Facebook, Google, Microsoft
Netflix

* Where to place content?

Which content to place? Pre-fetch or cache?

What about the content?

* Say you are Akamai
— Clusters of machines close to clients
— Caching data from many customers

— Proxy fetches data from origin server first time it sees
a URL

Choose cluster based on client network
location

How to choose server within a cluster?

If you choose based on client

— Low hit rate: N servers in cluster means N cache
misses per URL

Straw man: modulo hashing

Say you have N servers

Map requests to proxies as follows:
— Number servers 0 to N-1
— Compute hash of URL: h = hash (URL)
— Redirect client to server #p = h mod N
Keep track of load in each proxy

— If load on proxy #p is too high, try again with a
different hash function (or “salt”)

Problem: most caches will be useless if you add
or remove proxies, change value of N

Consistent Hashing karger et al., 99]

* URLs and Caches are mapped to points on a circle using a
hash function

* A URL is assigned to the closest cache clockwise

* Minimizes data movement on change!

— When a cache is added, only the items in the preceding segment are
moved

— When a cache is removed, only the next cache is affected

Consistent Hashing karger et al., 99]

* Minimizes data movement
— If 100 caches, add/remove a proxy invalidates ~1% of objects

— When proxy overloaded, spill to successor

* Can also handle servers with different capacities. How?

e
ojo— Give bigger proxies more random points on the ring

Summary

 HTTP Caching can greatly help performance

— Client, ISP, and Server-side caching

* CDNs make it more effective
— Incentives, push/pull, well provisioned
— DNS and Anycast tricks for finding close servers

— Consistent Hashing for smartly distributing load

Peer-to-Peer Systems

e How did it start?

— A killer application: file distribution
— Free music over the Internet! (not exactly legal...)

* Key idea: share storage, content, and bandwidth of
individual users
— Lots of them

* Big challenge: coordinate all of these users
— In a scalable way (not NxN!)
— With changing population (aka churn)
— With no central administration
— With no trust
— With large heterogeneity (content, storage, bandwidth,...)

3 Key Requirements

P2P Systems do three things:

Help users determine what they want

— Some form of search
— P2P version of Google
* Locate that content
— Which node(s) hold the content?

— P2P version of DNS (map name to location)

Download the content

— Should be efficient
— P2P form of Akamai

S
G3

Napster (1999)

= =

B

Xyz.mp3

B
B

2

\ENBI{

/BlE|

Napster

-

B
B

Xyz.mp3

B

2

\ENBI{

/BlE|

Napster

= =

B
B

Xyz.mp3

X
N
3
©
(08
-

N
S

4= [E]
\ENBI{

Napster

B
B

Xyz.mp3

B
¢
O
:

N
S

4= [E]
\ENBI{

Napster

 Search & Location: central server

Download: contact a peer, transfer directly

Advantages:

— Simple, advanced search possible

* Disadvantages:

— Single point of failure (technical and ... legal!)
— The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

* Search & Location: flooding (with TTL)
 Download: direct

/7;7 £?

= L
\ \ws / :\
E_; E—? [] Xyz.mp3 ?

N N

ju

pA——

An “unstructured” overlay network

Gnutella: Flooding on Overlays

Gnutella: Flooding on Overlays

)

Gnutella: Flooding on Overlays

/ ? 23

\/ A\

—0

o

KaZaA: Flooding w/ Super Peers (2001)

* Well connected nodes can be installed (KaZaA)
or self-promoted (Gnutella)

Say you want to make calls among peers

 You need to find who to call

— Centralized server for authentication, billing

* You need to find where they are

— Can use central server, or a decentralized search, such
as in KaZaA

* You need to call them

— What if both of you are behind NATs? (only allow
outgoing connections)

— You could use another peer as a relay...

Skype

* Built by the founders of KaZaA!

* Uses Superpeers for registering presence,
searching for where you are

* Uses regular nodes, outside of NATs, as
decentralized relays
— This is their killer feature

* This morning, from my computer:
— 29,565,560 people online

Lessons and Limitations

* Client-server performs well
— But not always feasible

* Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

* Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.

— Guarantees about anything (answer quality, privacy,
etc.)

BitTorrent (2001)

* One big problem with the previous approaches
— Asymmetric bandwidth

* BitTorrent (original design)

— Search: independent search engines (e.g. PirateBay,
isoHunt)
* Maps keywords -> .torrent file

— Location: centralized tracker node per file
— Download: chunked

* File split into many pieces

* Can download from many peers

BitTorrent

* How does it work?
— Split files into large pieces (256KB ~ 1MB)
— Split pieces into subpieces
— Get peers from tracker, exchange info on pieces
* Three-phases in download
— Start: get a piece as soon as possible (random)
— Middle: spread pieces fast (rarest piece)
— End: don’t get stuck (parallel downloads of last pieces)

BitTorrent

* Self-scaling: incentivize sharing

— If people upload as much as they download, system scales
with number of users (no free-loading)

* Uses tit-for-tat: only upload to who gives you data
— Choke most of your peers (don’t upload to them)
— Order peers by download rate, choke all but P best

— Occasionally unchoke a random peer (might become a nice
uploader)

* Optional reading:

[Do Incentives Build Robustness in BitTorrent? Piatek et al,
NSDI’07]

Structured Overlays: DHTs

 Academia came (a little later)...

* Goal: Solve efficient decentralized location
— Remember the second key challenge?

— Given ID, map to host
* Remember the challenges?

— Scale to millions of nodes
— Churn

— Heterogeneity

— Trust (or lack thereof)

e Selfish and malicious users

DHTs

IDs from a flat namespace
— Contrast with hierarchical IP, DNS

Metaphor: hash table, but distributed

Interface
— Get(key)
— Put(key, value)

* How?
— Every node supports a single operation:

Given a key, route messages to node holding key

Identifier to Node Mapping Example

* Node 8 maps [5,8]
* Node 15 maps [9,15]
* Node 20 maps [16, 20]

~
‘\

* Node 4 maps [59, 4]

- -
-

* Each node maintains a
pointer to its successor

Example from lon Stoica

Consistent Hashing?

* But each node only
knows about a small
number of other nodes
(so far only their
SUCCESSors)

Each node maintains its
successor

Route packet (ID, data) to
the node responsible for
ID using successor
pointers

node=44

Optional: DHT Maintenance

Stabilization Procedure

* Periodic operations performed by each node N to
maintain the ring:

STABILIZE() [N.successor = M]
N->M: “What is your predecessor?”
M->N: “x is my predecessor”
if x between (N,M), N.successor = x
N->N.successor: NOTIFY()
NOTIFY()
N->N.successor: “l think you are my successor”
M: upon receiving NOTIFY from N:
If (N between (M.predecessor, M))
M.predecessor = N

Joining Operation

succ=4
pred=44

= Node with id=50 joins
the ring
= Node 50 needs to

know at least one
node already in the

system
- Assume known node ...
is 15 pred=nil
50
succ=58

pred=35

Joining Operation

Node 50: send join(50) Sl:;;j4
to node 15 pred=
Node 44: returns node

58

Node 50 updates its
successor to 58

succ=h#
pred=nil

succ=58
pred=35

Joining Operation

succ=4

Node 50: send
stabilize() to node
58

Node 58:

- Replies with 44

- 50 determines
it is the right succ=58
predecessor pred=nil

succ=58)
pred=35

Joining Operation

] succ=4
Node 50: send ored=50

notify() to node
58

Node 58:

- update
predecessor to
50

succ=58
pred=nil

50

succ=58
pred=35

Joining Operation

succ=4
Node 44 sends a stabilize pred=50 g
message to its successor, node ﬁ
58

Node 58 replies with 50

Node 44 updates its successor
to 50 \\@

succ=58 gﬁi
pred=nil :

stabilize():

succ=58

pred=35 gﬁﬂ

“What is your predecessor?”

Joining Operation

succ=4
pred=50 pe=

= Node 44 sends a notify
message to its new successor,
node 50

= Node 50 sets its predecessor to
node 44

succ=58

pred=4l

50

succ=50
pred=35

Joining Operation (cont’d)

= This completes the joining
operation!

pred=50 pe=

Achieving Efficiency: finger tables

Finger Table at 80) 0 Say m=7

80 + 26) mod 27 =16

Chord

* There is a tradeoff between routing table size
and diameter of the network

* Chord achieves diameter O(log n) with O(log
n)-entry routing tables

Many other DHTs

« CAN

— Routing in n-dimensional space
* Pastry/Tapestry/Bamboo

— (Book describes Pastry)

— Names are fixed bit strings

— Topology: hypercube (plus a ring for fallback)
* Kademlia

— Similar to Pastry/Tapestry

— But the ring is ordered by the XOR metric

— Used by BitTorrent for distributed tracker

* Viceroy

— Emulated butterfly network
* Koorde

— DeBruijn Graph

— Each node connects to 2n, 2n+1
— Degree 2, diameter log(n)

Discussion

* Query can be implemented
— Iteratively: easier to debug
— Recursively: easier to maintain timeout values

* Robustness
— Nodes can maintain (k>1) successors
— Change notify() messages to take that into account

* Performance
— Routing in overlay can be worse than in the underlay

— Solution: flexibility in neighbor selection
 Tapestry handles this implicitly (multiple possible next hops)

* Chord can select any peer between [27,22*1) for finger,
choose the closest in latency to route through

Where are they now?

* Many P2P networks shut down

— Not for technical reasons!

— Centralized systems work well (or better) sometimes
* But...

— Vuze network: Kademlia DHT, millions of users

— Skype uses a P2P network similar to KaZaA

Where are they now?

e DHTSs allow coordination of MANY nodes

— Efficient flat namespace for routing and lookup
— Robust, scalable, fault-tolerant

* Ifyou can do that
— You can also coordinate co-located peers

— Now dominant design style in datacenters
* E.g., Amazon’s Dynamo storage system

— DHT-style systems everywhere
* Similar to Google’s philosophy
— Design with failure as the common case
— Recover from failure only at the highest layer
— Use low cost components
— Scale out, not up

