
CS168 Computer Networks Fonseca

Project 4: CDN
Due: 11:59 PM, Dec 12, 2019

Contents

1 Background 2

2 Overview 2

3 Components 3

3.1 Driver . 4

3.2 Client . 4

3.3 DNS Server . 4

3.4 Edge Servers . 4

4 Task 4

4.1 Potential Optimizations . 5

4.1.1 Geolocation . 5

4.1.2 Ping Optimizations . 5

5 Getting Started 6

6 Create a VM instance on GCP 6

6.1 Redeeming the Coupon Code . 6

6.2 Using Cloud Console to Create a New Project . 6

6.3 Create an incoming DNS firewall rule . 7

6.4 Creating a new VM . 7

6.5 SSH into the VM . 8

6.6 Persistently Running Code . 8

6.7 Shutdown / Delete the VM after Grading . 9

7 Leaderboard 9

8 Grading 9

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

1 Background

Content Distribution Networks (CDNs) are widely used to distribute massive amounts of data to
users all around the world. For instance, the popular CDN Akamai transports web traffic at nearly
50 terabits per second.1

At it’s core, a CDN is intended to allow users to quickly access geographically distributed web content.
To that end, Akamai’s services include load balancing, caching, and several other optimizations to
maximize the speed at which users can access data across the internet. In this project you are going
to build one critical component of a CDN, a DNS-based redirection service. However, given the
small class size and the minimal dataset we’ll be using, you don’t have to worry about most of these
features, because there will not be heavy traffic, and the entire content will fit in several service
replicas.

You will, however, be in charge of optimizing performance for the user. By the end of this project
you will have:

a. Implemented a DNS server using industry-grade DNS tools

b. Learned the fundamentals of the Google Cloud Platform

c. Familiarized yourself with the architecture of actual production-level CDN systems which
dominate the world wide web

2 Overview

In this assignment you will write a DNS server and run it on a VM instance on Google Cloud
Platform (GCP). Its job will be to resolve DNS queries to the edge server that is optimal for the
client. Consider the diagram below:

1https://www.akamai.com/us/en/about/facts-figures.jsp

2

https://en.wikipedia.org/wiki/Content_delivery_network

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

Suppose an web user located at the red diamond wants to go to example.com. The various servers
around the world are known as edge servers, and in our configuration each edge server has a copy of
example.com which the client can request. However, the user does not know which of these servers
to issue the HTTP GET request to for optimal performance. One of the ways a CDN does this is
through DNS redirection: the CDN is responsible for resolving example.com into an IP address,
and it uses information from the DNS request to choose an appropriate server. This is what you
will be implementing.

Represented by the globe in the ocean on the figure above, the DNS server should receive a DNS
query, for example:

www.example.com: type A, class IN
Name: www.example.com
Type: A (Host address)
Class: IN (0x0001)

In response, your DNS server should send a valid DNS response which tells the client which edge
server is optimal to request the site data from. We will come back to this example when we explain
optimizations you can choose to make to improve performance in your DNS server.

3 Components

We have implemented most portions of the CDN for you, and in this section we will detail what
we have done and what you need to do. In particular, we are running a set of globally distributed
server replicas and clients, and we have written a driver program that instructs a particular client
to request an object from the servers. The client will use your DNS server to choose the best server,

3

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

and make the request to that server. The client reports the time it took to fetch the object. We will
use the driver to test how well your DNS server chooses the best server for each client.

3.1 Driver

We have built a driver for you, which can be found in your starter repository (see the Getting Started
section). This simulates an application which can be used to test your DNS server. Concretely, it
may be invoked either as a standalone program or as a REPL. For specific usage, simply execute
./driver.py and type h for detailed instructions. In either the standalone or REPL case, when
you issue a request with the driver it relies on a client to perform the bulk of the processing.

3.2 Client

We have spun up several clients located around the world on the GCP. These clients take as input
requests from the driver and then perform the following steps:

• Send a DNS query using dig to the provided DNS server IP/port.

• Parse the response and then issue a GET request for the web content to the resolved edge
server.

• Return the time taken to get the data from the edge server and the web content.

We provide a list of clients which you may query in client-list.csv. The list also contains the
approximate latitude and longitude of each client. We will test your solution with a different set of
clients, but you can assume that your DNS server will have access to a file with the IP addresses,
latitude, and longitude of the clients.

3.3 DNS Server

You must implement this portion of the system. It should listen for DNS queries from clients and
respond with the address of the edge server which the client should request the site data from. More
on this below.

3.4 Edge Servers

We have also spun up several HTTP edge servers which contain the same web content. They
are are also running around the world on GCP machines. When content is requested, they will
return the actual web page. We provide a list of edge servers which you may resolve requests to in
server-list.csv. This file also contains latitudes and longitudes of the servers, which you may
need to optimize (more on this below).

4 Task

Your goal is to effectively implement a DNS server which instructs clients to use the optimal edge
server. When activated, it should be able to receive DNS queries from the geographically dispersed

4

https://linux.die.net/man/1/dig

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

clients and then return the best server for each client. The best in this case is the server replica that
would result in the smallest latency. The tricky part is on how to do this. You will be graded on
the average latency to request content from each client to each server. Since the clients and servers
are located all around the world, latencies can range from <10ms to >200ms.

A real CDN has to do this for potentially any client, and combines several methods. It can use
the geographic location of the requesting client and/or of the requesting DNS resolver the client
is using; it can use databases of latency measurements between different IP subnets; or it can use
active measurements from different servers to the client. To make your life simpler, the IP address
issuing the DNS request will always be the same as the IP of the client which will fetch the request.
We also have a limited number of clients and servers. You should NOT try to pre-compute the best
server for each client, and MUST do a dynamic determination for each client request.

4.1 Potential Optimizations

4.1.1 Geolocation

Geolocation is a simple way of optimizing data requests. Simply, an end-user should fetch data
from the edge server which is geographically closest to them, as it will decrease latency (remember
what we discussed in the physical layer about propagation, queuing, transmission, and processing
delays?) There are databases on the Internet that can do IP-geolocation, and normally you would
query them. https://db-ip.com/ is one of them. However, all of the IPs we are using belong to
Google, and the databases we tested are not very accurate, as Google moves the IP addresses pretty
arbitrarily among its geographic regions. Instead of using these databases, we are providing you
with files that have the latitude and longitude of the clients and servers. You are to treat these files
as IP geo-location databases: your code should read the location of each client as requests come (you
can store the file as a dictionary in memory), but NOT pre-compute the answers to every client.

In the world diagram from Section 2, you would probably return 1.1.1.1 as the closest server to the
red diamond. You can compute the distance between two pairs of latitude and longitude using the
Haversine formula.2

4.1.2 Ping Optimizations

Geolocation will not always be optimal, for several reasons. First, the geo-location databases may
be inaccurate. Second, Internet paths are often not optimal in terms of latencies. This can be due
to BGP policies, or the physical connectivity having to go to another country before coming back to
a close one, for example. Third, there can be transitent problems in any section of the network,
such as excessive queueing, making a path that was optimal not be anymore. For these reasons,
you may want to use actual measurements to determine the optimal server. We have implemented
a ping facility that allows your DNS server to execute real-time measurements if you want. Your
DNS server can, at any time, issue a request to one of the server IP addresses (which you know),
asking the server to ping a specific IP address. The server will run a ping command, and return the
output. The DNS server can do this upon receiving a request from client A: ask all (or a subset)
of the servers to ping A’s IP address, and choose the server with the lowest latency. Of course,
this process adds to the latency seen by the client, so you must be careful for the gains here to be

2https://en.wikipedia.org/wiki/Haversine_formula

5

https://en.wikipedia.org/wiki/Haversine_formula

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

competitive. For example, you might not need to wait for all servers to respond. Again, if you are
using this method, you should NOT assume that you know all possible clients, and thus you should
NOT pre-compute answers based on all pairs of clients and servers.

To ping, you may issue the following request:

http://<server IP addr>/ping.php?ip=<client IP address>

E.g.

http://34.97.58.4/ping.php?ip=128.148.32.12

5 Getting Started

• Accept the project at https://classroom.github.com/g/ph8qb_-t

• Try out the driver using our demo DNS server at IP 35.212.123.161 Port 53.

• Create a Google Cloud VM (see section 6)

• Now you’re setup to write and optimize your own DNS server, which you host on GCP. We
recommend using Python for this project, as it has many DNS libraries you can
use.

6 Create a VM instance on GCP

You will create your DNS server using free credits on Google Cloud.

6.1 Redeeming the Coupon Code

• Go to the following link: Google Cloud Coupon

• You will be asked for your name and email address. The email must match either brown.edu
or cs.brown.edu.

• This will give you $50, which you are free to use until 9/5/2020. There can be one redemption
per email, but please only redeem with one email per student, as we have exactly one coupon
per student in the class.

6.2 Using Cloud Console to Create a New Project

Refer to the Creating a project section of the website.

6

https://google.secure.force.com/GCPEDU?cid=s5mlrAGOBryxZCwyf%2Bf0IKCQALz%2BwDK8Shx7cBFfQN0bXFAZd94CYMDws14IOrYl
https://cloud.google.com/resource-manager/docs/creating-managing-projects

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

6.3 Create an incoming DNS firewall rule

All VMs in the Google Compute Platform by default block all external traffic, so we have to explicitly
open the port your DNS server will use. You can choose whichever port you want, the default for
DNS is port 53.

• Navigate to the Firewall Rules Page

• Click on Create firewall rule

• Create a name, such as ‘incoming-dns-from-us‘

• Choose ingress for direction; ‘All instances in the network’ for Targets

• Choose ‘34.0.0.0/7’ as the source IP ranges. This will encompass all of our clients. If you want
you can add Brown addresses as well, to test. If things seem broken you can even temporarily
use 0.0.0.0/0, but this will allow anyone on the Internet to bombard your DNS server with
attack queries, and you don’t want to be part of a DNS reflection attack.

• For Protocols and Ports, allow port 53 for both TCP and UDP, or any other port you want to
use for your DNS server.

• Click Create.

6.4 Creating a new VM

Adapted from the python notebook made by the CS147 Staff.

• Navigate here to go to the VM Instances page.

• Click the Create instance button.

• Under Machine configuration, select General-purpose as Machine family and f1-micro as
Machine type.

7

https://console.cloud.google.com/networking/firewalls/list
https://drive.google.com/drive/u/0/folders/1xZEl6-21b1DRCpTc97nu0-QUP2ODrNBu
https://cloud.google.com/compute/docs/instances/create-start-instance

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

• Click on the Create button. It may take a few minutes to create the instance.

All other fields can be left with their default values. You should see an external IP Address
assigned to your VM instance after the creation. For more information, refer to the Create an
instance from an image section of the website.

6.5 SSH into the VM

You can use the web client to ssh into the VM instance you just created. On the SSH drop-down
list in Compute Engine → VM Instance view, choose Open in browser window.

6.6 Persistently Running Code

Once you have a working DNS server, you will want it to be running persistently on the VM. If you
run it in the terminal then quit your SSH session, it will turn off your server. To make it persistent,
you may use any of the following utilities (in order of simplicity):

• screen or tmux these terminal multiplexing tools will let you make a terminal session then
detach that session, which will keep the terminal running when you disconnect.

8

https://cloud.google.com/compute/docs/instances/create-start-instance
https://www.gnu.org/software/screen/manual/screen.html
http://man7.org/linux/man-pages/man1/tmux.1.html

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

• nohup will let you run your server and ignore the SIGHUP signal sent when you disconnect.

• systemd will require making your DNS server into a Linux service.

6.7 Shutdown / Delete the VM after Grading

You should shut down or delete the VM instance to avoid unnecessary charge. Click on the three
dots next to SSH and select Stop / Delete.

7 Leaderboard

For fun, we have implemented an online leaderboard, which updates hourly. This will automatically
test your DNS server against our random version, and it will show the performance (in terms of
average latency) of the current submissions. We may assign bonus points for the best performing
groups. Details on the leaderboard will be coming in the next few days.

8 Grading

Both the CDN servers and clients are distributed around the world. We will primarily grade you
on the performance of your DNS resolutions when used to fetch content. We will use the driver to
request a subset of the documents in the servers from all clients, and we will look at the average
response time as reported by the clients. You should do better than a DNS server that returns
a random edge server for each request, and you should do better than a DNS server that always
returns the same edge server for all requests. The basic functionality will be using IP geolocation to
return answers, and extended functionality will be anything that performs better than geolocation.

We will also inspect your code to make sure you are doing things dynamically, and are not pre-
computing responses. We will use a different set of clients for grading the the ones you currently
have. Your DNS server may assume that a file called client-list.csv will be given.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS168 document by filling out the anonymous feedback form:

9

https://linux.die.net/man/1/nohup
http://man7.org/linux/man-pages/man1/init.1.html

CS168 Project 4: CDN 11:59 PM, Dec 12, 2019

https://piazza.com/brown/fall2019/csci1680.

10

https://piazza.com/brown/fall2019/csci1680

	Background
	Overview
	Components
	Driver
	Client
	DNS Server
	Edge Servers

	Task
	Potential Optimizations
	Geolocation
	Ping Optimizations

	Getting Started
	Create a VM instance on GCP
	Redeeming the Coupon Code
	Using Cloud Console to Create a New Project
	Create an incoming DNS firewall rule
	Creating a new VM
	SSH into the VM
	Persistently Running Code
	Shutdown / Delete the VM after Grading

	Leaderboard
	Grading

