
CSCI-1680
WWW

Based	partly	on	lecture	notes	by	Scott	Shenker and	John	Jannotti

Rodrigo Fonseca

Precursors

• 1945, Vannevar Bush, Memex:
– “a device in which an individual stores all his books,

records, and communications, and which is
mechanized so that it may be consulted with
exceeding speed and flexibility”

• Precursors to hypertext
– “The human mind [...] operates by association. With

one item in its grasp, it snaps instantly to the next that
is suggested by the association of thoughts, in
accordance with some intricate web of trails carried by
the cells of the brain”

• His essay, “As we may think”, is worth reading!

Tim Berners-Lee

• Physicist at CERN, trying to solve real problem
– Distributed access to data

• WWW: distributed database of pages linked
through the Hypertext Transfer Protocol
– First HTTP implementation: 1990
– HTTP/0.9 – 1991

• Simple GET commant
– HTTP/1.0 – 1992

• Client/server information, simple caching
– HTTP/1.1 – 1996

• Extensive caching support
• Host identification
• Pipelined, persistent connections, …

• HTTP/2 – 2015
– True multiplexing of messages

• Multiple streams
• Flow control
• Prioritization

– Binary encoding
– Header compression
– Main goal: reduce latency

http://httpwg.org/specs/rfc7540.html

Why so successful?

• Ability to self publish
– Like youtube for video

• But…
– Mechanism is easy
– Independent, open
– Free

• Current debate
– Is it easy enough? Why is facebook so popular, even

though it is not open?

Components

• Content
– Objects (may be static or dynamically generated)

• Clients
– Send requests / Receive responses

• Servers
– Receive requests / Send responses
– Store or generate content

• Proxies
– Placed between clients and servers
– Provide extra functions

• Caching, anonymization, logging, transcoding, filtering access
– Explicit or transparent

Ingredients

• HTTP
– Hypertext Transfer Protocol

• HTML
– Language for description of content

• Names (mostly URLs)
– Won’t talk about URIs, URNs

URLs

protocol://[name@]hostname[:port]/directory/resourc
e?k1=v1&k2=v2#tag

• URLs are a type of URIs
• Name is for possible client identification
• Hostname is FQDN or IP address
• Port defaults to protocol default (e.g., 80)
• Directory is a path to the resource
• Resource is the name of the object
• ?parameters are passed to the server for execution
• #tag allows jumps to named tags within document

HTTP

• Important properties
– Client-server protocol
– Protocol (but not data) in ASCII (before HTTP/2)
– Stateless
– Extensible (header fields)

• Server typically listens on port 80
• Server sends response, may close connection

(client may ask it to say open)
• Currently version 2

Steps in HTTP(1.0) Request

• Open TCP connection to server
• Send request
• Receive response
• TCP connection terminates
– How many RTTs for a single request?

• You may also need to do a DNS lookup first!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en”>

...

HTTP Request

• Method:
– GET: current value of resource, run program
– HEAD: return metadata associated with a resource
– POST: update a resource, provide input for a program

• Headers: useful info for proxies or the server
– E.g., desired language

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
(empty line)

Firefox	extension	LiveHTTPHeaders is	a	cool	way	to	see	this

HTTP Response

• Status Codes:
– 1xx: Information e.g, 100 Continue
– 2xx: Success e.g., 200 OK
– 3xx: Redirection e.g., 302 Found (elsewhere)
– 4xx: Client Error e.g., 404 Not Found
– 5xx: Server Error e.g, 503 Service Unavailable

HTTP Response Format
version status code phrase ��

header field name value ��

header field name value ��

��

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

HTTP is Stateless

• Each request/response treated independently
• Servers not required to maintain state
• This is good!
– Improves server scalability

• This is also bad…
– Some applications need persistent state
– Need to uniquely identify user to customize content
– E.g., shopping cart, web-mail, usage tracking, (most

sites today!)

HTTP Cookies
• Client-side state maintenance

– Client stores small state on behalf of server
– Sends request in future requests to the server
– Cookie value is meaningful to the server (e.g., session id)

• Can provide authentication

Request

Response
Set-Cookie:	XYZ

Request
Cookie:	XYZ

Anatomy of a Web Page

• HTML content
• A number of additional resources
– Images
– Scripts
– Frames

• Browser makes one HTTP request for each
object
– Course web page: 14 objects
– My facebook page this morning: 100 objects

What about AJAX?

• Asynchronous Javascript and XML
• Based on XMLHttpRequest object in browsers,

which allow code in the page to:
– Issue a new, non-blocking request to the server,

without leaving the current page
– Receive the content
– Process the content

• Used to add interactivity to web pages
– XML not always used, HTML fragments, JSON, and

plain text also popular

The Web is Dead? (Wired, Aug 2010)

http://www.wired.com/magazine/2010/08/ff_webrip/all/1

The Web is Dead? (Wired, Aug 2010)

• You wake up and check your email on your bedside
iPad — that’s one app. During breakfast you browse
Facebook, Twitter, and The New York Times —
three more apps. On the way to the office, you listen
to a podcast on your smartphone. Another app. At
work, you scroll through RSS feeds in a reader and
have Skype and IM conversations. More apps. At the
end of the day, you come home, make dinner while
listening to Pandora, play some games on Xbox Live,
and watch a movie on Netflix’s streaming service.
You’ve spent the day on the Internet — but not on
the Web. And you are not alone.

White paper
Cisco public

Consumer internet traffic, 2016–2021
This category encompasses any IP traffic that crosses the Internet and is not confined to a single service provider’s
network. Internet video streaming and downloads are beginning to take a larger share of bandwidth and will grow to
more than 81 percent of all consumer Internet traffic by 2021 (Table 8).

Table 8. Global consumer internet traffic, 2016–2021

Consumer Internet Traffic, 2016–2021

2016 2017 2018 2019 2020 2021 CAGR
2016–2021

By Network (PB per Month)

Fixed 52,678 67,081 83,518 103,696 127,152 154,023 24%

Mobile 5,953 9,345 14,029 20,556 29,343 41,417 47%

By Subsegment (PB per Month)

Internet video 42,029 57,116 75,109 98,182 125,853 159,161 31%

Web, email, and data 9,059 10,681 12,864 15,120 17,502 19,538 17%

Online gaming 915 1,818 2,857 4,396 6,753 10,147 62%

File sharing 6,628 6,810 6,717 6,554 6,388 6,595 0%

By Geography (PB per Month)

Asia Pacific 20,049 26,401 34,179 44,669 57,659 74,419 30%

North America 19,365 25,132 31,802 39,647 48,224 56,470 24%

Western Europe 8,929 11,475 14,344 17,857 22,011 27,211 25%

Central and Eastern Europe 4,206 5,152 6,321 7,960 10,155 12,822 25%

Middle East and Africa 1,771 2,801 4,218 6,209 9,059 13,229 50%

Latin America 4,311 5,466 6,683 7,909 9,387 11,288 21%

Total (PB per Month)

Consumer Internet traffic 58,630 76,426 97,547 124,252 156,496 195,440 27%

Source: Cisco VNI, 2017

© 2017 Cisco and/or its affiliates. All rights reserved.

White paper
Cisco public

Consumer internet traffic, 2016–2021
This category encompasses any IP traffic that crosses the Internet and is not confined to a single service provider’s
network. Internet video streaming and downloads are beginning to take a larger share of bandwidth and will grow to
more than 81 percent of all consumer Internet traffic by 2021 (Table 8).

Table 8. Global consumer internet traffic, 2016–2021

Consumer Internet Traffic, 2016–2021

2016 2017 2018 2019 2020 2021 CAGR
2016–2021

By Network (PB per Month)

Fixed 52,678 67,081 83,518 103,696 127,152 154,023 24%

Mobile 5,953 9,345 14,029 20,556 29,343 41,417 47%

By Subsegment (PB per Month)

Internet video 42,029 57,116 75,109 98,182 125,853 159,161 31%

Web, email, and data 9,059 10,681 12,864 15,120 17,502 19,538 17%

Online gaming 915 1,818 2,857 4,396 6,753 10,147 62%

File sharing 6,628 6,810 6,717 6,554 6,388 6,595 0%

By Geography (PB per Month)

Asia Pacific 20,049 26,401 34,179 44,669 57,659 74,419 30%

North America 19,365 25,132 31,802 39,647 48,224 56,470 24%

Western Europe 8,929 11,475 14,344 17,857 22,011 27,211 25%

Central and Eastern Europe 4,206 5,152 6,321 7,960 10,155 12,822 25%

Middle East and Africa 1,771 2,801 4,218 6,209 9,059 13,229 50%

Latin America 4,311 5,466 6,683 7,909 9,387 11,288 21%

Total (PB per Month)

Consumer Internet traffic 58,630 76,426 97,547 124,252 156,496 195,440 27%

Source: Cisco VNI, 2017

© 2017 Cisco and/or its affiliates. All rights reserved.

0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000

2016 2017 2018 2019 2020 2021

Consumer	Internet	Traffic	(PB/month)

Internet	video	 Web,	email,	and	data	 Online	gaming	 File	sharing	

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2016 2017 2018 2019 2020 2021

Consumer	Internet	Traffic

Internet	video	 Web,	email,	and	data	 Online	gaming	 File	sharing	

Except	that	video	is	also	transferred	over	HTTP!

HTTP Performance

• What matters for performance?
• Depends on type of request
– Lots of small requests (objects in a page)
– Some big requests (large download or video)

Small Requests

• Latency matters
• RTT dominates
• Two major causes:
– Opening a TCP connection
– Actually sending the request and receiving response
– And a third one: DNS lookup!

How can we reduce the number of
connection setups?

• Keep the connection open and request all
objects serially
– Works for all objects coming from the same server
– Which also means you don’t have to “open” the

window each time
• Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Small Requests (cont)

• Second problem is that requests are serialized
– Similar to stop-and-wait protocols!

• Two solutions
– Pipelined requests (similar to sliding windows)
– Parallel Connections

• HTTP standard says no more than 2 concurrent connections
per host name

• Most browsers use more (up to 8 per host, ~35 total)
– See http://www.browserscope.org/

– How are these two approaches different?

HTTP/2

• Adds more options to trade off:
• Multiplexed streams on same connection
– Plus stream weights, dependencies

• No head of line blocking!
– But what happens if there is packet loss?

https://www.twilio.com/blog/2017/10/http2-issues.html

Larger Objects

• Problem is throughput in bottleneck link
• Solution: HTTP Proxy Caching
– Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

• More when we talk about Content Distribution

Next Class

• Global data distribution
– CDN and P2P

• How to create your own application layer
protocol!
– Data / RPC

