CSCI-1680
Some Alternatives

Rodrigo Fonseca

Based partly on lecture notes by Scott Shenker and John Jannotti

Alternatives

 P2P

— Focus on scalable routing on flat names

* Erasure Coding
— Alternative to ACK-based reliability

* Information-Centric Networking

— Alternative to pair-based communication

Peer-to-Peer Systems

How did it start?

— A killer application: file distribution

— Free music over the Internet! (not exactly legal...)
Key idea: share storage, content, and bandwidth of
individual users

— Lots of them

Big challenge: coordinate all of these users
— In a scalable way (not NxN!)
— With changing population (aka churn)
— With no central administration
— With no trust
— With large heterogeneity (content, storage, bandwidth,...)

3 Key Requirements

P2P Systems do three things:

Help users determine what they want

— Some form of search

— P2P version of Google

* Locate that content
— Which node(s) hold the content?

— P2P version of DNS (map name to location)

Download the content

— Should be efficient
— P2P form of Akamai

S
G3

Napster (1999)

-]

Xyz.mp3

Napster

u
-]

Xyz.mp3

Napster

-]
-]

Xyz.mp3

Napster

Xyz.mp3

Napster

 Search & Location: central server

Download: contact a peer, transfer directly

Advantages:
— Simple, advanced search possible
* Disadvantages:

— Single point of failure (technical and ... legal!)
— The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

* Search & Location: flooding (with TTL)
 Download: direct

Xyz.mp3 ?

j\ 7 ;\F
\ N -

ju

pA——

An “unstructured” overlay network

Gnutella: Flooding on Overlays

Gnutella: Flooding on Overlays

| xyz.mp3?

\ﬁ@ﬁ/jlooding

Gnutella: Flooding on Overlays

—0

/%VB

!
-
|

pA——

| N

KaZaA: Flooding w/ Super Peers (2001)

* Well connected nodes can be installed (KaZaA)
or self-promoted (Gnutella)

Say you want to make calls among peers

* You need to find who to call

— Centralized server for authentication, billing

* You need to find where they are

— Can use central server, or a decentralized search, such
as in KaZaA

* You need to call them

— What if both of you are behind NATs? (only allow
outgoing connections)

— You could use another peer as a relay...

Skype

* Built by the founders of KaZaA!

* Uses Superpeers for registering presence,
searching for where you are

* Uses regular nodes, outside of NATs, as
decentralized relays
— This is their killer feature

* This morning, from my computer:
— 29,565,560 people online

Lessons and Limitations

* Client-server performs well
— But not always feasible

* Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

* Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.

— Guarantees about anything (answer quality, privacy,
etc.)

((BitTorrent (2001)

W

__4

* One big problem with the previous approaches
— Asymmetric bandwidth

* BitTorrent (original design)

— Search: independent search engines (e.g. PirateBay,
isoHunt)
* Maps keywords -> .torrent file

— Location: centralized tracker node per file
— Download: chunked

* File split into many pieces

* Can download from many peers

((BitTorrent

W

* How does it work?
— Split files into large pieces (256KB ~ 1MB)
— Split pieces into subpieces
— Get peers from tracker, exchange info on pieces
* Three-phases in download
— Start: get a piece as soon as possible (random)
— Middle: spread pieces fast (rarest piece)
— End: don’t get stuck (parallel downloads of last pieces)

(/ BitTorrent

Wi
* Self-scaling: incentivize sharing

__4

— If people upload as much as they download, system scales with
number of users (no free-loading)
* Uses tit-for-tat: only upload to those who give you data
— Choke most of your peers (don’t upload to them)
— Order peers by download rate, choke all but P best

— Occasionally unchoke a random peer (might become a nice
uploader)

* Optional reading:

[Do Incentives Build Robustness in BitTorrent? Piatek et al,
NSDI’07]

http://www.usenix.org/events/nsdi07/tech/piatek/piatek.pdf

Structured Overlays: DHTs

 Academia came (a little later)...

 Goal: Solve efficient decentralized location

— Remember the second key challenge?

— Given ID, map to host

* Remember the challenges?
— Scale to millions of nodes
— Churn
— Heterogeneity
— Trust (or lack thereof)

e Selfish and malicious users

DHTs

IDs from a flat namespace
— Contrast with hierarchical IP, DNS

Metaphor: hash table, but distributed

Interface

— Get(key)

— Put(key, value)
How?

— Every node supports a single operation:

Given a key, route messages to node holding key

Identifier to Node Mapping Example

* Node 8 maps [5,8]
* Node 15 maps [9,15]
* Node 20 maps [16, 20] !

* Node 4 maps [59, 4]

I
I
|
I
1
\

* Each node maintains a
pointer to its successor

Example from lon Stoica

Consistent Hashing-like

* But each node only I
knows about a small ,'
number of other nodes |
(so far only their \
SUCCESSors)

Each node maintains its
successor

Route packet (ID, data) to
the node responsible for
ID using successor
pointers

node=44

Optional: DHT Maintenance

Stabilization Procedure

* Periodic operations performed by each node N to
maintain the ring:

STABILIZE() [N.successor = M]
N->M: “What is your predecessor?”
M->N: “x is my predecessor”
if x between (N,M), N.successor = x
N->N.successor: NOTIFY()
NOTIFY()
N->N.successor: “I think you are my successor”
M: upon receiving NOTIFY from N:
If (N between (M.predecessor, M))
M.predecessor = N

Joining Operation

succ=4
pred=44

= Node with id=50 joins
the ring
= Node 50 needs to

know at least one
node already in the

system
- Assume known node |, .-nil
is 15 preds=nil
50
succ=58

pred=35

Joining Operation

Node 50: send join(50) 5‘:;:‘24 —
to node 15 Preas
Node 44: returns node

58

Node 50 updates its
successor to 58

succ=h#d
pred=nil

succ=58
pred=35

Joining Operation

succ=4

Node 50: send
stabilize() to node
58

Node 58:
- Replies with 44

- 50 determines
|t |S the rlght succ=58
predecessor pred=nil

succ=58)
pred=35

Joining Operation

succ=4

Node 50: send
notify() to node

58
Node 58:
- update

predecessor to

>0 succ=58

pred=nil
50
succ=58

pred=35

Joining Operation

succ=4
Node 44 sends a stabilize pred=50 g
message to its successor, node ﬁ
58

Node 58 replies with 50

Node 44 updates its successor
to 50 &

succ=58 E
pred=nil L

stabilize():

succ=58

pred=35 ﬁ

“What is your predecessor?”

Joining Operation

succ=4
pred=50 =

= Node 44 sends a notify
message to its new successor,
node 50

= Node 50 sets its predecessor to
node 44

succ=58

Joining Operation (cont’d)

= This completes the joining
operation!

pred=50 p=

Achieving Efficiency: finger tables

=7
Finger Table at 80 - 0 Say m

(80 + 26) mod 27 =16

Chord

* There is a tradeoff between routing table size
and diameter of the network

— You can achieve diameter O(1) with O(n)-entry
routing tables

— Max diameter with O(1) routing tables (random
walks)
* Chord achieves diameter O(log n) with O(log
n)-entry routing tables

Many other DHTs

* CAN

— Routing in n-dimensional space

* Pastry/Tapestry/Bamboo

— (Book describes Pastry)

— Names are fixed bit strings

— Topology: hypercube (plus a ring for fallback)
* Kademlia

— Similar to Pastry/Tapestry

— But the ring is ordered by the XOR metric

— Used by BitTorrent for distributed tracker

* Viceroy

— Emulated butterfly network
* Koorde

— DeBruijn Graph

— Each node connects to 2n, 2n+1
— Degree 2, diameter log(n)

Discussion

* Query can be implemented
— Iteratively: easier to debug
— Recursively: easier to maintain timeout values

* Robustness
— Nodes can maintain (k>1) successors
— Change notify() messages to take that into account

e Performance

— Routing in overlay can be worse than in the underlay

— Solution: flexibility in neighbor selection

 Tapestry handles this implicitly (multiple possible next hops)

* Chord can select any peer between [27,22*1) for finger,
choose the closest in latency to route through

Where are they now?

* Many P2P networks shut down
— Not for technical reasons!
— Centralized systems work well (or better) sometimes

e But...

— Vuze network: Kademlia DHT, millions of users

— Concepts incorporated into many systems (e.g., Amazon’s
DynamoDB)

— Skype used to use a P2P network similar to KaZaA

* Shown that you can have scalable routing without
hierarchy

Where are they now?

e DHTSs allow coordination of MANY nodes

— Efficient flat namespace for routing and lookup
— Robust, scalable, fault-tolerant

* Ifyou can do that
— You can also coordinate co-located peers

— Now dominant design style in datacenters
* E.g., Amazon’s Dynamo storage system

— DHT-style systems everywhere
* Similar to Google’s philosophy
— Design with failure as the common case
— Recover from failure only at the highest layer
— Use low cost components
— Scale out, not up

An alternative for reliability

* Erasure coding
— Assume you can detect errors

— Code is designed to tolerate entire missing packets
* Collisions, noise, drops because of bit errors

— Forward error correction

* Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

* Property:
— From K source frames, produce B > K encoded frames

— Receiver can reconstruct source with any K’ frames,
with K slightly larger than K

— Some codes can make B as large as needed, on the fly

Erasure Codes

* Motivation: scalability of reliable multicast

— Problem: in large multicast groups, where each
receiver misses specific packets, how to coordinate
retransmissions?

* Erasure codes:

— Any K out of N messages reconstruct original content
* Initially:

— Fixed-rate codes (e.g. Reed-Solomon ~ 1960)

* Solve for polynomial of degree K with N linearly
independent equations

LT Codes

* Luby Transform Codes
— Michael Luby, circa 1998

* Encoder: repeat B times

1. Pick a degree d (*)

2. Randomly select d source blocks. Encoded block ¢,=
XOR or selected blocks

* The degree is picked from a distribution, robust soliton
distribution, that guarantees that the decoding process will succeed

with high probability

More on encoding

* Picking the degree d of encoded blocks

— Robust Soliton Distribution

— Balances the probability that there is at least one block of
degree 1 in each decoding iteration

— While trying to minimize the probability of decoding
failing
* In practice, you don’t encode the list of source
blocks on each block, but the state of a pseudo-
random number generator
— From this you can generate the next numbers in the

sequence: degree d, and the next ids of the d source blocks
in the encoded block

LT Decoder

* Find an encoded block t, with d=1

* Sets, =t,

* For all other blocks t, > that include s
set t =t - XOR s_

* Delete s, from all encoding lists

* Finish if

1. You decode all source blocks, or

nJ

2. You run out out blocks of degree 1

Decoding Example

2

S

1

Decoding Example

2

S

1

Decoding Example

2

S

1

Decoding Example

Decoding Example

Decoding Example

Decoding Example

Decoding Example

000

(K

080

S
AT

Decoding Example

000

(£

080

§\"'5
R

Decoding Example

00000

gecce

S
AT

00000

Decoding Example

90060

Uses

* IPTV, defense, postal service, satellite systems
* 3G/4G/5G Multicast service (Qualcomm)

* Storage systems

Byers, Luby, Mitzenmacher, CCR 2019. A Digital Fountain Retrospective
https://ccronline.sigcomm.org/wp-content/uploads/2019/10/acmdl19-354.pdf

https://ccronline.sigcomm.org/wp-content/uploads/2019/10/acmdl19-354.pdf

Information-Centric Networking (ICN)
(a vision)
Named-Data Networking (NDN)
(a specific architecture proposal)

Content-Centric Networking (CCN)
(an earlier project)

Some content from kc klaffy, CAIDA

RIS
Communications

LN

* IP Networking: node-to-node gg
communication

* Today: most uses retrieve
objects, don’t care which
server they come from

*UTelegraph, Telephony:
pairwise communication

ta Networking

Focus on data rather than on endpoints

 All content is named

* In-network storage and multicast arise
naturally

* Secure the data rather than the process

— Each data packet is immutable and signed

l/

4
=
~

=] El

\ENE]{

How does this work?

Interest Packet

Data Packet

Name Name
Selectors Metalnfo
(order preference, publisher filter, (content type,

exclude filter, ...)

freshness period, ...)

Nonce

Content

Guiders
(scope, Interest lifetime)

-~

——

Signature

(signature type, key locator,
signature bits, ...)

-~

(" Content Store A
Name Data
Face O
. v
/parc.com/videos/WidgetA.mpg/v3/s0 . : 4—:—
Y —
Index : B
Pending Interest Table (PIT) ptr [type Face |
Requestin, ace
Prefix egace(s) 9 o ¢ reEEN
1
o p : (—:—-.
/parc.com/videos/WidgetA.mpg/v3/s1 0 <J : *— >
1
@ | F S
C = Content store F 2
P=PIT
FIB Forie s2CL
1
Prefix__ | Face list : 1 o o
. ' Application
, O——>
/parc.com 0,1 1 1
R |
\ J

9)
1 Ié
;1

9)

/BB

\ENE]{

A new architecture

Today’s architecture

D

NDN architecture

C C
/ email WWW phone ... \ ’ ’ / browser chat ... \
\ SMTP HTTP RTP .. / \ File Stream ... /
TCP UDP . Individual apps \ Security /
>packets< Every node >gg::‘ekr;t<
ethernet PPP Individual links / Strategy \
/ CSMA async sonet ... \ / IP UDP P2P BCast ... \
\ copper fiber radio ...) ‘ ‘ \ copper fiber radio ... }
C) ¢)

Interest

Jyoutube/video/343 @L/ @

Ei
~
pe Data S

Found in
Publisher

cache

Some details (and questions)

Names are hierarchical

— e.g. /brown.edu/courses/cs168/f19/videos/125.mpg/5

— Can name anything (including endpoints)
Routing can work similarly to IP prefix-based
routing

— Aggregation on prefixes, longest-prefix matching
Signatures enable caching anywhere

— Hierarchical names provide context for trust management

Pull-based model

— Not “always on”, no unsolicited packets
— Eliminates some types of DDoS attackes

Will this work?

* Many challenges
— Does the current architecture work “well enough™?
— Can we route efficiently on names of unbounded length?
— How does trust management work? Yet another PKI?

— What is the role of CDNs?

* Proponents view this as the underlying
architecture in 20 years, with IP-like
communications as a special case

— Much like telephony today is a special case of IP
communications

