
CSCI-1680
Some Alternatives

Based partly on lecture notes by Scott Shenker and John Jannotti

Rodrigo Fonseca

Alternatives

• P2P
– Focus on scalable routing on flat names

• Erasure Coding
– Alternative to ACK-based reliability

• Information-Centric Networking
– Alternative to pair-based communication

Peer-to-Peer Systems

• How did it start?
– A killer application: file distribution
– Free music over the Internet! (not exactly legal…)

• Key idea: share storage, content, and bandwidth of
individual users
– Lots of them

• Big challenge: coordinate all of these users
– In a scalable way (not NxN!)
– With changing population (aka churn)
– With no central administration
– With no trust
– With large heterogeneity (content, storage, bandwidth,…)

3 Key Requirements

• P2P Systems do three things:
• Help users determine what they want
– Some form of search
– P2P version of Google

• Locate that content
– Which node(s) hold the content?
– P2P version of DNS (map name to location)

• Download the content
– Should be efficient
– P2P form of Akamai

Napster (1999)

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

xyz.mp3 ?

xyz.mp3

Napster

• Search & Location: central server
• Download: contact a peer, transfer directly
• Advantages:
– Simple, advanced search possible

• Disadvantages:
– Single point of failure (technical and … legal!)
– The latter is what got Napster killed

Gnutella: Flooding on Overlays (2000)

xyz.mp3 ?

xyz.mp3

An “unstructured” overlay network

• Search & Location: flooding (with TTL)
• Download: direct

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

Gnutella: Flooding on Overlays

xyz.mp3

KaZaA: Flooding w/ Super Peers (2001)

• Well connected nodes can be installed (KaZaA)
or self-promoted (Gnutella)

Say you want to make calls among peers

• You need to find who to call
– Centralized server for authentication, billing

• You need to find where they are
– Can use central server, or a decentralized search, such

as in KaZaA
• You need to call them
– What if both of you are behind NATs? (only allow

outgoing connections)
– You could use another peer as a relay…

Skype

• Built by the founders of KaZaA!
• Uses Superpeers for registering presence,

searching for where you are
• Uses regular nodes, outside of NATs, as

decentralized relays
– This is their killer feature

• This morning, from my computer:
– 29,565,560 people online

Lessons and Limitations

• Client-server performs well
– But not always feasible

• Things that flood-based systems do well
– Organic scaling
– Decentralization of visibility and liability
– Finding popular stuff
– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff
– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy,

etc.)

BitTorrent (2001)

• One big problem with the previous approaches
– Asymmetric bandwidth

• BitTorrent (original design)
– Search: independent search engines (e.g. PirateBay,

isoHunt)
• Maps keywords -> .torrent file

– Location: centralized tracker node per file
– Download: chunked

• File split into many pieces
• Can download from many peers

BitTorrent

• How does it work?
– Split files into large pieces (256KB ~ 1MB)
– Split pieces into subpieces
– Get peers from tracker, exchange info on pieces

• Three-phases in download
– Start: get a piece as soon as possible (random)
– Middle: spread pieces fast (rarest piece)
– End: don’t get stuck (parallel downloads of last pieces)

BitTorrent

• Self-scaling: incentivize sharing
– If people upload as much as they download, system scales with

number of users (no free-loading)
• Uses tit-for-tat: only upload to those who give you data

– Choke most of your peers (don’t upload to them)
– Order peers by download rate, choke all but P best
– Occasionally unchoke a random peer (might become a nice

uploader)
• Optional reading:

[Do Incentives Build Robustness in BitTorrent? Piatek et al,
NSDI’07]

http://www.usenix.org/events/nsdi07/tech/piatek/piatek.pdf

Structured Overlays: DHTs

• Academia came (a little later)…
• Goal: Solve efficient decentralized location
– Remember the second key challenge?
– Given ID, map to host

• Remember the challenges?
– Scale to millions of nodes
– Churn
– Heterogeneity
– Trust (or lack thereof)

• Selfish and malicious users

DHTs

• IDs from a flat namespace
– Contrast with hierarchical IP, DNS

• Metaphor: hash table, but distributed
• Interface
– Get(key)
– Put(key, value)

• How?
– Every node supports a single operation:

Given a key, route messages to node holding key

Identifier to Node Mapping Example

• Node 8 maps [5,8]
• Node 15 maps [9,15]
• Node 20 maps [16, 20]
• …
• Node 4 maps [59, 4]

• Each node maintains a
pointer to its successor

4

20

3235

8

15

44

58

Example from Ion Stoica

Consistent Hashing-like

• But each node only
knows about a small
number of other nodes
(so far only their
successors)

4

20

3235

8

15

44

58

Lookup

• Each node maintains its
successor

• Route packet (ID, data) to
the node responsible for
ID using successor
pointers

4

20

3235

8

15

44

58

lookup(37)

node=44

Optional: DHT Maintenance

Stabilization Procedure

• Periodic operations performed by each node N to
maintain the ring:

STABILIZE() [N.successor = M]

N->M: “What is your predecessor?”
M->N: “x is my predecessor”
if x between (N,M), N.successor = x

N->N.successor: NOTIFY()

NOTIFY()

N->N.successor: “I think you are my successor”
M: upon receiving NOTIFY from N:

If (N between (M.predecessor, M))

M.predecessor = N

Joining Operation

4

20

3235

8

15

44

58

50

§ Node with id=50 joins
the ring

§ Node 50 needs to
know at least one
node already in the
system

- Assume known node
is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

Joining Operation

4

20

3235

8

15

44

58

50

§ Node 50: send join(50)
to node 15

§ Node 44: returns node
58

§ Node 50 updates its
successor to 58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

Joining Operation

4

20

3235

8

15

44

58

50

§ Node 50: send
stabilize() to node
58

§ Node 58:
- Replies with 44
- 50 determines

it is the right
predecessor

succ=58
pred=nil

succ=58
pred=35

stabilize():
“What is your predecessor?”

“m
y p

re
de

ce
ss

or
 is

 44

succ=4
pred=44

Joining Operation

4

20

3235

8

15

44

58

50

§ Node 50: send
notify() to node
58

§ Node 58:
- update

predecessor to
50 succ=58

pred=nil

succ=58
pred=35

notify():
“I think you are my successor”

pred=50
succ=4
pred=44

Joining Operation

4

20

3235

8

15

44

58

50

§ Node 44 sends a stabilize
message to its successor, node
58

§ Node 58 replies with 50
§ Node 44 updates its successor

to 50
succ=58

stabilize():
“What is your predecessor?”

“m
y p

re
de

ce
ss

or
 is

 50
”

succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

Joining Operation

4

20

3235

8

15

44

58

50

§ Node 44 sends a notify
message to its new successor,
node 50

§ Node 50 sets its predecessor to
node 44

succ=58

succ=50

notify()
pred=44

pred=50

pred=35

succ=4

pred=nil

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

§ This completes the joining
operation!

succ=58

succ=50

pred=44

pred=50

Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

Chord

• There is a tradeoff between routing table size
and diameter of the network
– You can achieve diameter O(1) with O(n)-entry

routing tables
– Max diameter with O(1) routing tables (random

walks)
• Chord achieves diameter O(log n) with O(log

n)-entry routing tables

Many other DHTs
• CAN

– Routing in n-dimensional space
• Pastry/Tapestry/Bamboo

– (Book describes Pastry)
– Names are fixed bit strings
– Topology: hypercube (plus a ring for fallback)

• Kademlia
– Similar to Pastry/Tapestry
– But the ring is ordered by the XOR metric
– Used by BitTorrent for distributed tracker

• Viceroy
– Emulated butterfly network

• Koorde
– DeBruijn Graph
– Each node connects to 2n, 2n+1
– Degree 2, diameter log(n)

• …

Discussion

• Query can be implemented
– Iteratively: easier to debug
– Recursively: easier to maintain timeout values

• Robustness
– Nodes can maintain (k>1) successors
– Change notify() messages to take that into account

• Performance
– Routing in overlay can be worse than in the underlay
– Solution: flexibility in neighbor selection

• Tapestry handles this implicitly (multiple possible next hops)
• Chord can select any peer between [2n,2n+1) for finger,

choose the closest in latency to route through

Where are they now?

• Many P2P networks shut down
– Not for technical reasons!
– Centralized systems work well (or better) sometimes

• But…
– Vuze network: Kademlia DHT, millions of users
– Concepts incorporated into many systems (e.g., Amazon’s

DynamoDB)
– Skype used to use a P2P network similar to KaZaA

• Shown that you can have scalable routing without
hierarchy

Where are they now?

• DHTs allow coordination of MANY nodes
– Efficient flat namespace for routing and lookup
– Robust, scalable, fault-tolerant

• If you can do that
– You can also coordinate co-located peers
– Now dominant design style in datacenters

• E.g., Amazon’s Dynamo storage system
– DHT-style systems everywhere

• Similar to Google’s philosophy
– Design with failure as the common case
– Recover from failure only at the highest layer
– Use low cost components
– Scale out, not up

An alternative for reliability

• Erasure coding
– Assume you can detect errors
– Code is designed to tolerate entire missing packets

• Collisions, noise, drops because of bit errors
– Forward error correction

• Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

• Property:
– From K source frames, produce B > K encoded frames
– Receiver can reconstruct source with any K’ frames,

with K’ slightly larger than K
– Some codes can make B as large as needed, on the fly

Erasure Codes

• Motivation: scalability of reliable multicast
– Problem: in large multicast groups, where each

receiver misses specific packets, how to coordinate
retransmissions?

• Erasure codes:
– Any K out of N messages reconstruct original content

• Initially:
– Fixed-rate codes (e.g. Reed-Solomon ~ 1960)

• Solve for polynomial of degree K with N linearly
independent equations

LT Codes

• Luby Transform Codes
– Michael Luby, circa 1998

• Encoder: repeat B times
1. Pick a degree d (*)
2. Randomly select d source blocks. Encoded block tn=

XOR or selected blocks

* The degree is picked from a distribution, robust soliton
distribution, that guarantees that the decoding process will succeed
with high probability

More on encoding

• Picking the degree d of encoded blocks
– Robust Soliton Distribution
– Balances the probability that there is at least one block of

degree 1 in each decoding iteration
– While trying to minimize the probability of decoding

failing
• In practice, you don’t encode the list of source

blocks on each block, but the state of a pseudo-
random number generator
– From this you can generate the next numbers in the

sequence: degree d, and the next ids of the d source blocks
in the encoded block

LT Decoder

• Find an encoded block tn with d=1
• Set sn = tn

• For all other blocks tn’ that include sn ,
set tn’=tn’ XOR sn

• Delete sn from all encoding lists
• Finish if

1. You decode all source blocks, or
2. You run out out blocks of degree 1

Decoding Example

1

2

3

4

5

1⊕2

3⊕4

1⊕4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1⊕2

3⊕4

1⊕4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1⊕2

3⊕4

1⊕4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1

3⊕4

1⊕4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1

3⊕4

1⊕4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1

3⊕4

4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1

3⊕4

4

3⊕4⊕5

2

Decoding Example

1

2

3

4

5

1

3

4

3⊕5

2

Decoding Example

1

2

3

4

5

1

3

4

3⊕5

2

Decoding Example

1

2

3

4

5

1

3

4

5

2

Decoding Example

1

2

3

4

5

1

3

4

5

2

Uses

• IPTV, defense, postal service, satellite systems
• 3G/4G/5G Multicast service (Qualcomm)
• Storage systems
• …

Byers, Luby, Mitzenmacher, CCR 2019. A Digital Fountain Retrospective
https://ccronline.sigcomm.org/wp-content/uploads/2019/10/acmdl19-354.pdf

https://ccronline.sigcomm.org/wp-content/uploads/2019/10/acmdl19-354.pdf

Information-Centric Networking (ICN)
(a vision)

Named-Data Networking (NDN)
(a specific architecture proposal)

Content-Centric Networking (CCN)
(an earlier project)

Some content from kc klaffy, CAIDA

Evolution of Communications

• Telegraph, Telephony:
pairwise communication

• IP Networking: node-to-node
communication

• Today: most uses retrieve
objects, don’t care which
server they come from

Named-Data Networking

• Focus on data rather than on endpoints
• All content is named
• In-network storage and multicast arise

naturally
• Secure the data rather than the process
– Each data packet is immutable and signed

How does this work?

A new architecture

Today’s architecture NDN architecture

Some details (and questions)

• Names are hierarchical
– e.g. /brown.edu/courses/cs168/f19/videos/l25.mpg/5
– Can name anything (including endpoints)

• Routing can work similarly to IP prefix-based
routing
– Aggregation on prefixes, longest-prefix matching

• Signatures enable caching anywhere
– Hierarchical names provide context for trust management

• Pull-based model
– Not “always on”, no unsolicited packets
– Eliminates some types of DDoS attackes

Will this work?

• Many challenges
– Does the current architecture work “well enough”?
– Can we route efficiently on names of unbounded length?
– How does trust management work? Yet another PKI?
– What is the role of CDNs?

• Proponents view this as the underlying
architecture in 20 years, with IP-like
communications as a special case
– Much like telephony today is a special case of IP

communications

